BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31309478)

  • 1. A Microfluidic E-Tongue System Using Layer-by-Layer Films Deposited onto Interdigitated Electrodes Inside a Polydimethylsiloxane Microchannel.
    Braunger ML; Daikuzono CM; Riul A
    Methods Mol Biol; 2019; 2027():141-150. PubMed ID: 31309478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring spatial distribution of ethanol in microfluidic channels by using a thin layer of cholesteric liquid crystal.
    Sutarlie L; Yang KL
    Lab Chip; 2011 Dec; 11(23):4093-8. PubMed ID: 22030694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information Visualization and Feature Selection Methods Applied to Detect Gliadin in Gluten-Containing Foodstuff with a Microfluidic Electronic Tongue.
    Daikuzono CM; Shimizu FM; Manzoli A; Riul A; Piazzetta MHO; Gobbi AL; Correa DS; Paulovich FV; Oliveira ON
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19646-19652. PubMed ID: 28481518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA tracking within a nanochannel: device fabrication and experiments.
    Mokkapati VR; Di Virgilio V; Shen C; Mollinger J; Bastemeijer J; Bossche A
    Lab Chip; 2011 Aug; 11(16):2711-9. PubMed ID: 21734983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lab-on-chip flow injection analysis system without an external pump and valves and integrated with an in line electrochemical detector.
    Chen IJ; Lindner E
    Anal Chem; 2009 Dec; 81(24):9955-60. PubMed ID: 19925010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection.
    Martín A; Kim J; Kurniawan JF; Sempionatto JR; Moreto JR; Tang G; Campbell AS; Shin A; Lee MY; Liu X; Wang J
    ACS Sens; 2017 Dec; 2(12):1860-1868. PubMed ID: 29152973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells.
    Cho H; Kim J; Jeon CW; Han KH
    Lab Chip; 2017 Nov; 17(23):4113-4123. PubMed ID: 29094741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid metal electrode-enabled flexible microdroplet sensor.
    Zhang R; Ye Z; Gao M; Gao C; Zhang X; Li L; Gui L
    Lab Chip; 2020 Feb; 20(3):496-504. PubMed ID: 31840725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary flow layer-by-layer: a microfluidic platform for the high-throughput assembly and screening of nanolayered film libraries.
    Castleberry SA; Li W; Deng D; Mayner S; Hammond PT
    ACS Nano; 2014 Jul; 8(7):6580-9. PubMed ID: 24836460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A disposable smart microfluidic platform integrated with on-chip flow sensors.
    Kim J; Cho H; Kim J; Park JS; Han KH
    Biosens Bioelectron; 2021 Mar; 176():112897. PubMed ID: 33342692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue.
    Shimizu FM; Pasqualeti AM; Todão FR; de Oliveira JFA; Vieira LCS; Gonçalves SPC; da Silva GH; Cardoso MB; Gobbi AL; Martinez DST; Oliveira ON; Lima RS
    ACS Sens; 2018 Mar; 3(3):716-726. PubMed ID: 29424231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.