These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31309675)

  • 1. The aspartimide problem persists: Fluorenylmethyloxycarbonyl-solid-phase peptide synthesis (Fmoc-SPPS) chain termination due to formation of N-terminal piperazine-2,5-diones.
    Samson D; Rentsch D; Minuth M; Meier T; Loidl G
    J Pept Sci; 2019 Jul; 25(7):e3193. PubMed ID: 31309675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The aspartimide problem in Fmoc-based SPPS. Part I.
    Mergler M; Dick F; Sax B; Weiler P; Vorherr T
    J Pept Sci; 2003 Jan; 9(1):36-46. PubMed ID: 12587881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,4-diazepine-2,5-dione ring formation during solid phase synthesis of peptides containing aspartic acid beta-benzyl ester.
    Süli-Vargha H; Schlosser G; Ilas J
    J Pept Sci; 2007 Nov; 13(11):742-8. PubMed ID: 17853501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aspartimide problem in Fmoc-based SPPS. Part III.
    Mergler M; Dick F
    J Pept Sci; 2005 Oct; 11(10):650-7. PubMed ID: 15849777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preventing aspartimide formation in Fmoc SPPS of Asp-Gly containing peptides--practical aspects of new trialkylcarbinol based protecting groups.
    Behrendt R; Huber S; White P
    J Pept Sci; 2016 Feb; 22(2):92-7. PubMed ID: 26751703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis.
    Palasek SA; Cox ZJ; Collins JM
    J Pept Sci; 2007 Mar; 13(3):143-8. PubMed ID: 17121420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New t-butyl based aspartate protecting groups preventing aspartimide formation in Fmoc SPPS.
    Behrendt R; Huber S; Martí R; White P
    J Pept Sci; 2015 Aug; 21(8):680-7. PubMed ID: 26077723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The aspartimide problem in Fmoc-based SPPS. Part II.
    Mergler M; Dick F; Sax B; Stähelin C; Vorherr T
    J Pept Sci; 2003 Aug; 9(8):518-26. PubMed ID: 12952393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Fmoc solid-phase peptide synthesis.
    Behrendt R; White P; Offer J
    J Pept Sci; 2016 Jan; 22(1):4-27. PubMed ID: 26785684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quaternary β
    Yu JS; Noda H; Shibasaki M
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):818-822. PubMed ID: 29168280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging Hydrazide as Protection for Carboxylic Acid: Suppression of Aspartimide Formation during Fmoc Solid-Phase Peptide Synthesis.
    Sato K; Uemura H; Narumi T; Mase N
    Org Lett; 2024 May; 26(21):4497-4501. PubMed ID: 38768369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Fmoc-solid-phase peptide synthesis of an extracellular loop of CFTR for antibody selection by the phage display technology.
    Ferreira VFC; Correia JDG; Farinha CM; Mendes F
    J Pept Sci; 2020 Jul; 26(7):e3253. PubMed ID: 32400108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A backbone amide protecting group for overcoming difficult sequences and suppressing aspartimide formation.
    Abdel-Aal AB; Papageorgiou G; Raz R; Quibell M; Burlina F; Offer J
    J Pept Sci; 2016 May; 22(5):360-7. PubMed ID: 27086749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM).
    Vanier GS
    Methods Mol Biol; 2013; 1047():235-49. PubMed ID: 23943491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide thioester preparation by Fmoc solid phase peptide synthesis for use in native chemical ligation.
    Clippingdale AB; Barrow CJ; Wade JD
    J Pept Sci; 2000 May; 6(5):225-34. PubMed ID: 10823491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha- and beta- aspartyl peptide ester formation via aspartimide ring opening.
    Stathopoulos P; Papas S; Kostidis S; Tsikaris V
    J Pept Sci; 2005 Oct; 11(10):658-64. PubMed ID: 15884102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved preparation of amyloid-beta peptides using DBU as Nalpha-Fmoc deprotection reagent.
    Tickler AK; Barrow CJ; Wade JD
    J Pept Sci; 2001 Sep; 7(9):488-94. PubMed ID: 11587187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation.
    Sakamoto K; Sato K; Shigenaga A; Tsuji K; Tsuda S; Hibino H; Nishiuchi Y; Otaka A
    J Org Chem; 2012 Aug; 77(16):6948-58. PubMed ID: 22816612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Asp-based lactam cyclic peptides using an amide-bonded diaminodiacid to prevent aspartimide formation.
    Li WJ; Chen JY; Zhu HX; Li YM; Xu Y
    Org Biomol Chem; 2024 May; 22(18):3584-3588. PubMed ID: 38623862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.