These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31309959)

  • 1. Ionic aggregation-induced emission dye with bulky counterions for preparation of bright near-infrared polymeric nanoparticles.
    Adarsh N; Klymchenko AS
    Nanoscale; 2019 Aug; 11(29):13977-13987. PubMed ID: 31309959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fighting Aggregation-Caused Quenching and Leakage of Dyes in Fluorescent Polymer Nanoparticles: Universal Role of Counterion.
    Andreiuk B; Reisch A; Bernhardt E; Klymchenko AS
    Chem Asian J; 2019 Mar; 14(6):836-846. PubMed ID: 30604924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulky Barbiturates as Non-Toxic Ionic Dye Insulators for Enhanced Emission in Polymeric Nanoparticles.
    Andreiuk B; Aparin IO; Reisch A; Klymchenko AS
    Chemistry; 2021 Sep; 27(50):12877-12883. PubMed ID: 34164869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrabright Fluorescent Polymeric Nanofibers and Coatings Based on Ionic Dye Insulation with Bulky Counterions.
    Ashoka AH; Klymchenko AS
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28889-28898. PubMed ID: 34106696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counterion-insulated near-infrared dyes in biodegradable polymer nanoparticles for
    Sobska J; Andreiuk B; Aparin IO; Reisch A; Krezel W; Klymchenko AS
    Nanoscale Adv; 2021 Dec; 4(1):39-48. PubMed ID: 35028505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging.
    Reisch A; Klymchenko AS
    Small; 2016 Apr; 12(15):1968-92. PubMed ID: 26901678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified Fluorescence
    Egloff S; Melnychuk N; Cruz Da Silva E; Reisch A; Martin S; Klymchenko AS
    ACS Nano; 2022 Jan; 16(1):1381-1394. PubMed ID: 34928570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled AIEgen nanoparticles for multiscale NIR-II vascular imaging.
    Li Y; Hu D; Sheng Z; Min T; Zha M; Ni JS; Zheng H; Li K
    Biomaterials; 2021 Jan; 264():120365. PubMed ID: 32971372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging.
    Ding D; Li K; Qin W; Zhan R; Hu Y; Liu J; Tang BZ; Liu B
    Adv Healthc Mater; 2013 Mar; 2(3):500-7. PubMed ID: 23184536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting.
    Shulov I; Oncul S; Reisch A; Arntz Y; Collot M; Mely Y; Klymchenko AS
    Nanoscale; 2015 Nov; 7(43):18198-210. PubMed ID: 26482443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring Fluorescence Brightness and Switching of Nanoparticles through Dye Organization in the Polymer Matrix.
    Reisch A; Trofymchuk K; Runser A; Fleith G; Rawiso M; Klymchenko AS
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43030-43042. PubMed ID: 29185702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles.
    Reisch A; Didier P; Richert L; Oncul S; Arntz Y; Mély Y; Klymchenko AS
    Nat Commun; 2014 Jun; 5():4089. PubMed ID: 24909912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Engineering of an Organic NIR-II Fluorophore with Aggregation-Induced Emission Characteristics for In Vivo Imaging.
    Wu W; Yang Y; Yang Y; Yang Y; Zhang K; Guo L; Ge H; Chen X; Liu J; Feng H
    Small; 2019 May; 15(20):e1805549. PubMed ID: 30925013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the color and photostability of perylene diimides inside polymer nanoparticles: towards biodegradable substitutes of quantum dots.
    Trofymchuk K; Reisch A; Shulov I; Mély Y; Klymchenko AS
    Nanoscale; 2014 Nov; 6(21):12934-42. PubMed ID: 25233438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles.
    Reisch A; Runser A; Arntz Y; Mély Y; Klymchenko AS
    ACS Nano; 2015 May; 9(5):5104-16. PubMed ID: 25894117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotinylated Fluorescent Polymeric Nanoparticles for Enhanced Immunostaining.
    Yudhistira T; Da Silva EC; Combes A; Lehmann M; Reisch A; Klymchenko AS
    Small Methods; 2023 Apr; 7(4):e2201452. PubMed ID: 36808832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Far Red/Near-Infrared AIE Dots for Image-Guided Photodynamic Cancer Cell Ablation.
    Feng G; Wu W; Xu S; Liu B
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21193-200. PubMed ID: 27462722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three-photon near-infrared emission for in vivo brain angiography.
    Liu W; Wang Y; Han X; Lu P; Zhu L; Sun C; Qian J; He S
    Nanoscale; 2018 May; 10(21):10025-10032. PubMed ID: 29774924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights.
    Feng G; Liu B
    Acc Chem Res; 2018 Jun; 51(6):1404-1414. PubMed ID: 29733571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrabright Fluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for Live Tracking in the Mouse Brain.
    Khalin I; Heimburger D; Melnychuk N; Collot M; Groschup B; Hellal F; Reisch A; Plesnila N; Klymchenko AS
    ACS Nano; 2020 Aug; 14(8):9755-9770. PubMed ID: 32680421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.