These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 31310523)
1. Production of Rare Ginsenosides Rg3 and Rh2 by Endophytic Bacteria from Yan H; Jin H; Fu Y; Yin Z; Yin C J Agric Food Chem; 2019 Aug; 67(31):8493-8499. PubMed ID: 31310523 [TBL] [Abstract][Full Text] [Related]
2. Generation of ginsenosides Rg3 and Rh2 from North American ginseng. Popovich DG; Kitts DD Phytochemistry; 2004 Feb; 65(3):337-44. PubMed ID: 14751305 [TBL] [Abstract][Full Text] [Related]
3. Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng. Fu Y Lett Appl Microbiol; 2019 Feb; 68(2):134-141. PubMed ID: 30362617 [TBL] [Abstract][Full Text] [Related]
4. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Wang P; Wei Y; Fan Y; Liu Q; Wei W; Yang C; Zhang L; Zhao G; Yue J; Yan X; Zhou Z Metab Eng; 2015 May; 29():97-105. PubMed ID: 25769286 [TBL] [Abstract][Full Text] [Related]
5. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng. Fu Y; Yin ZH; Yin CY J Appl Microbiol; 2017 Jun; 122(6):1579-1585. PubMed ID: 28256039 [TBL] [Abstract][Full Text] [Related]
6. Preparation and bioactivity of the rare ginsenosides Rg3 and Rh2: An updated review. Xu W; Lyu W; Duan C; Ma F; Li X; Li D Fitoterapia; 2023 Jun; 167():105514. PubMed ID: 37084851 [TBL] [Abstract][Full Text] [Related]
7. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Bae EA; Han MJ; Kim EJ; Kim DH Arch Pharm Res; 2004 Jan; 27(1):61-7. PubMed ID: 14969341 [TBL] [Abstract][Full Text] [Related]
8. [Fungal biotransformation of ginsenoside Rg3]. Xiuli W; Yan W; Wenqian Z; Yixuan Z Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1181-5. PubMed ID: 19062641 [TBL] [Abstract][Full Text] [Related]
9. Biotransformation of ginsenoside Rb1 to ginsenoside C-K by endophytic fungus Arthrinium sp. GE 17-18 isolated from Panax ginseng. Fu Y; Yin ZH; Wu LP; Yin CR Lett Appl Microbiol; 2016 Sep; 63(3):196-201. PubMed ID: 27316666 [TBL] [Abstract][Full Text] [Related]
10. Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius. Lu C; Zhao S; Wei G; Zhao H; Qu Q Plant Physiol Biochem; 2017 Feb; 111():67-76. PubMed ID: 27914321 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides Rg3, Rf, and Rh2 in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. Bae EA; Han MJ; Shin YW; Kim DH Biol Pharm Bull; 2006 Sep; 29(9):1862-7. PubMed ID: 16946499 [TBL] [Abstract][Full Text] [Related]
12. [Isolation of endophytic bacteria in roots of Panax ginseng and screening of antagonistic strains against phytopathogens prevalent in P. ginseng]. Li Y; Zhao D; Ding W; Ying Y Zhongguo Zhong Yao Za Zhi; 2012 Jun; 37(11):1532-5. PubMed ID: 22993975 [TBL] [Abstract][Full Text] [Related]
13. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Cheng LQ; Na JR; Bang MH; Kim MK; Yang DC Phytochemistry; 2008 Jan; 69(1):218-24. PubMed ID: 17764709 [TBL] [Abstract][Full Text] [Related]
14. Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Wang CZ; Aung HH; Ni M; Wu JA; Tong R; Wicks S; He TC; Yuan CS Planta Med; 2007 Jun; 73(7):669-74. PubMed ID: 17538869 [TBL] [Abstract][Full Text] [Related]
15. Anxiolytic-like effects of ginsenosides Rg3 and Rh2 from red ginseng in the elevated plus-maze model. Kim TW; Choi HJ; Kim NJ; Kim DH Planta Med; 2009 Jun; 75(8):836-9. PubMed ID: 19266429 [TBL] [Abstract][Full Text] [Related]
16. High production of ginsenosides by transformed root cultures of Panax ginseng: effect of basal medium and Agrobacterium rhizogenes strains. Shu W; Yoshimatsu K; Yamaguchi H; Shimomura K Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1999; (117):148-54. PubMed ID: 10939847 [TBL] [Abstract][Full Text] [Related]
17. [Screening and identification of an endophytic bacterium with 1-aminocyclopropane-1-carboxylate deaminase activity from Panax ginseng and its effect on host growth]. Tian L; Jiang Y; Chen C; Zhang G; Li T; Tong B; Xu P Wei Sheng Wu Xue Bao; 2014 Jul; 54(7):760-9. PubMed ID: 25252457 [TBL] [Abstract][Full Text] [Related]
18. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture. Song X; Wu H; Yin Z; Lian M; Yin C Molecules; 2017 May; 22(6):. PubMed ID: 28545250 [TBL] [Abstract][Full Text] [Related]
19. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Biswas T; Mathur AK; Mathur A Appl Microbiol Biotechnol; 2017 May; 101(10):4009-4032. PubMed ID: 28411325 [TBL] [Abstract][Full Text] [Related]
20. Elicitors' influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions. Biswas T; Kalra A; Mathur AK; Lal RK; Singh M; Mathur A Appl Microbiol Biotechnol; 2016 Jun; 100(11):4909-22. PubMed ID: 26795963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]