These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31310700)

  • 41. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.
    Cornilescu G; Bahrami A; Tonelli M; Markley JL; Eghbalnia HR
    J Biomol NMR; 2007 Aug; 38(4):341-51. PubMed ID: 17610130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of correlated residual dipolar couplings to the determination of the molecular alignment tensor magnitude of oriented proteins and nucleic acids.
    Bryce DL; Bax A
    J Biomol NMR; 2004 Mar; 28(3):273-87. PubMed ID: 14752260
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sign determination of dipolar couplings in field-oriented bicelles by variable angle sample spinning (VASS).
    Tian F; Losonczi JA; Fischer MW; Prestegard JH
    J Biomol NMR; 1999 Oct; 15(2):145-50. PubMed ID: 10605087
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins.
    Kucharska I; Edrington TC; Liang B; Tamm LK
    J Biomol NMR; 2015 Apr; 61(3-4):261-74. PubMed ID: 25869397
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advances in NMR Spectroscopy of Weakly Aligned Biomolecular Systems.
    Chiliveri SC; Robertson AJ; Shen Y; Torchia DA; Bax A
    Chem Rev; 2022 May; 122(10):9307-9330. PubMed ID: 34766756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing motions between equivalent RNA domains using magnetic field induced residual dipolar couplings: accounting for correlations between motions and alignment.
    Zhang Q; Throolin R; Pitt SW; Serganov A; Al-Hashimi HM
    J Am Chem Soc; 2003 Sep; 125(35):10530-1. PubMed ID: 12940730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and function of proteins in membranes and nanodiscs.
    Lemieux MJ; Overduin M
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183445. PubMed ID: 32841614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis, Characterization, and Nanodisc Formation of Non-ionic Polymers*.
    Ravula T; Ramamoorthy A
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):16885-16888. PubMed ID: 33998111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal-Chelated Polymer Nanodiscs for NMR Studies.
    Hardin NZ; Kocman V; Di Mauro GM; Ravula T; Ramamoorthy A
    Angew Chem Int Ed Engl; 2019 Nov; 58(48):17246-17250. PubMed ID: 31529579
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanodiscs for structural and functional studies of membrane proteins.
    Denisov IG; Sligar SG
    Nat Struct Mol Biol; 2016 Jun; 23(6):481-6. PubMed ID: 27273631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
    Zhang R; Mroue KH; Ramamoorthy A
    Acc Chem Res; 2017 Apr; 50(4):1105-1113. PubMed ID: 28353338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The importance of being ordered: improving NMR structures using residual dipolar couplings.
    Gronenborn AM
    C R Biol; 2002 Sep; 325(9):957-66. PubMed ID: 12481689
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel NMR tools to study structure and dynamics of biomembranes.
    Gawrisch K; Eldho NV; Polozov IV
    Chem Phys Lipids; 2002 Jun; 116(1-2):135-51. PubMed ID: 12093539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase.
    Maltsev AS; Grishaev A; Roche J; Zasloff M; Bax A
    J Am Chem Soc; 2014 Mar; 136(10):3752-5. PubMed ID: 24568736
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probing membrane topology by high-resolution 1H-13C heteronuclear dipolar solid-state NMR spectroscopy.
    Lu JX; Damodaran K; Lorigan GA
    J Magn Reson; 2006 Feb; 178(2):283-7. PubMed ID: 16275029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins.
    Mascioni A; Veglia G
    J Am Chem Soc; 2003 Oct; 125(41):12520-6. PubMed ID: 14531696
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurement and application of 1H-19F dipolar couplings in the structure determination of 2'-fluorolabeled RNA.
    Luy B; Marino JP
    J Biomol NMR; 2001 May; 20(1):39-47. PubMed ID: 11430754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unraveling long range residual dipolar coupling networks in strongly aligned proteins.
    Arbogast L; Majumdar A; Tolman JR
    J Magn Reson; 2013 Oct; 235():26-31. PubMed ID: 23917309
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detergent-free isolation of CYP450-reductase's FMN-binding domain in
    Krishnarjuna B; Ravula T; Ramamoorthy A
    Chem Commun (Camb); 2022 Apr; 58(31):4913-4916. PubMed ID: 35356954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct prediction of NMR residual dipolar couplings from the primary sequence of unfolded proteins.
    Huang JR; Ozenne V; Jensen MR; Blackledge M
    Angew Chem Int Ed Engl; 2013 Jan; 52(2):687-90. PubMed ID: 23192984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.