BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 31310757)

  • 1. Exploiting ensemble learning to improve prediction of phospholipidosis inducing potential.
    Nath A; Sahu GK
    J Theor Biol; 2019 Oct; 479():37-47. PubMed ID: 31310757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting phospholipidosis using machine learning.
    Lowe R; Glen RC; Mitchell JB
    Mol Pharm; 2010 Oct; 7(5):1708-14. PubMed ID: 20799726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of physicochemical calculation of pKa and CLogP to predict phospholipidosis-inducing potential: a case study with structurally related piperazines.
    Ploemen JP; Kelder J; Hafmans T; van de Sandt H; van Burgsteden JA; Saleminki PJ; van Esch E
    Exp Toxicol Pathol; 2004 Mar; 55(5):347-55. PubMed ID: 15088636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the Risk of Phospholipidosis with in Silico Models and an Image-Based in Vitro Screen.
    Fusani L; Brown M; Chen H; Ahlberg E; Noeske T
    Mol Pharm; 2017 Dec; 14(12):4346-4352. PubMed ID: 29077420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of an in silico phospholipidosis prediction method using descriptors related to molecular interactions causing phospholipid-compound complex formation.
    Haranosono Y; Nemoto S; Kurata M; Sakaki H
    J Toxicol Sci; 2016 Apr; 41(2):321-8. PubMed ID: 26961617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-induced phospholipidosis: are there functional consequences?
    Reasor MJ; Kacew S
    Exp Biol Med (Maywood); 2001 Oct; 226(9):825-30. PubMed ID: 11568304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High content screening analysis of phospholipidosis: validation of a 96-well assay with CHO-K1 and HepG2 cells for the prediction of in vivo based phospholipidosis.
    van de Water FM; Havinga J; Ravesloot WT; Horbach GJ; Schoonen WG
    Toxicol In Vitro; 2011 Dec; 25(8):1870-82. PubMed ID: 21651975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weka machine learning for predicting the phospholipidosis inducing potential.
    Ivanciuc O
    Curr Top Med Chem; 2008; 8(18):1691-709. PubMed ID: 19075775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assays and biomarkers for drug-induced phospholipidosis.
    Monteith DK; Morgan RE; Halstead B
    Expert Opin Drug Metab Toxicol; 2006 Oct; 2(5):687-96. PubMed ID: 17014389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMALPHI: A Machine Learning Platform for Predicting Drug-Induced PhospholIpidosis.
    Lomuscio MC; Abate C; Alberga D; Laghezza A; Corriero N; Colabufo NA; Saviano M; Delre P; Mangiatordi GF
    Mol Pharm; 2024 Feb; 21(2):864-872. PubMed ID: 38134445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening for phospholipidosis induced by central nervous drugs: comparing the predictivity of an in vitro assay to high throughput in silico assays.
    Mesens N; Steemans M; Hansen E; Verheyen GR; Van Goethem F; Van Gompel J
    Toxicol In Vitro; 2010 Aug; 24(5):1417-25. PubMed ID: 20430096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of phospholipidosis induction: a cell-based assay in high-throughput and high-content format.
    Shahane SA; Huang R; Gerhold D; Baxa U; Austin CP; Xia M
    J Biomol Screen; 2014 Jan; 19(1):66-76. PubMed ID: 24003057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel set of biomarkers for evaluating phospholipidosis-inducing potential of compounds using rat liver microarray data measured 24-h after single dose administration.
    Yudate HT; Kai T; Aoki M; Minowa Y; Yamada T; Kimura T; Ono A; Yamada H; Ohno Y; Urushidani T
    Toxicology; 2012 May; 295(1-3):1-7. PubMed ID: 22426296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-Based Imaging Assay for Detection of Phospholipidosis.
    Zhang L; Li S; Xia M
    Methods Mol Biol; 2022; 2474():73-82. PubMed ID: 35294757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous ensemble learning for enhanced crash forecasts - A frequentist and machine learning based stacking framework.
    Ahmad N; Wali B; Khattak AJ
    J Safety Res; 2023 Feb; 84():418-434. PubMed ID: 36868672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.
    Liu M; Zhang L; Li S; Yang T; Liu L; Zhao J; Liu H
    Toxicol Lett; 2020 Oct; 332():88-96. PubMed ID: 32629073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning and live-cell imaging tool kit uncovers small molecules induced phospholipidosis.
    Hu H; Tjaden A; Knapp S; Antolin AA; Müller S
    Cell Chem Biol; 2023 Dec; 30(12):1634-1651.e6. PubMed ID: 37797617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure based model for the prediction of phospholipidosis induction potential of small molecules.
    Sun H; Shahane S; Xia M; Austin CP; Huang R
    J Chem Inf Model; 2012 Jul; 52(7):1798-805. PubMed ID: 22725677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic amphiphilic drug-induced phospholipidosis.
    Halliwell WH
    Toxicol Pathol; 1997; 25(1):53-60. PubMed ID: 9061852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a stacked ensemble learning framework to predict modulators of protein-protein interactions.
    Gao M; Zhao L; Zhang Z; Wang J; Wang C
    Comput Biol Med; 2023 Jul; 161():107032. PubMed ID: 37230018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.