These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31310872)

  • 21. Biomimetic synthesis of polydopamine-graphene oxide/hydroxyapatite for efficient and fast uranium(VI) capture from aqueous solution.
    Xiong W; Liu H; Yang S; Liu Y; Fu T
    Environ Sci Pollut Res Int; 2023 Nov; 30(53):114569-114581. PubMed ID: 37861826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient U(VI) capture by amidoxime/carbon nitride composites: Evidence of EXAFS and modeling.
    Hu B; Wang H; Liu R; Qiu M
    Chemosphere; 2021 Jul; 274():129743. PubMed ID: 33540307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fully phosphorylated 3D graphene oxide foam for the significantly enhanced U(VI) sequestration.
    Cai Y; Wang X; Feng J; Zhu M; Alsaedi A; Hayat T; Tan X
    Environ Pollut; 2019 Jun; 249():434-442. PubMed ID: 30913442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect.
    Han R; Zou W; Wang Y; Zhu L
    J Environ Radioact; 2007; 93(3):127-43. PubMed ID: 17258360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene oxide-facilitated uranium transport and release in saturated medium: Effect of ionic strength and medium structure.
    Zhao K; Chen C; Cheng T; Shang J
    Environ Pollut; 2019 Apr; 247():668-677. PubMed ID: 30711822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: Evaluation on characteristics, mechanisms and performance.
    Su M; Tsang DCW; Ren X; Shi Q; Tang J; Zhang H; Kong L; Hou L; Song G; Chen D
    Environ Pollut; 2019 Nov; 254(Pt A):112891. PubMed ID: 31408794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics.
    Singh S; Anil AG; Khasnabis S; Kumar V; Nath B; Adiga V; Kumar Naik TSS; Subramanian S; Kumar V; Singh J; Ramamurthy PC
    Environ Res; 2022 Jan; 203():111891. PubMed ID: 34419468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple method for preparing ultra-light graphene aerogel for rapid removal of U(VI) from aqueous solution.
    Zhao D; Wang Y; Zhao S; Wakeel M; Wang Z; Shaikh RS; Hayat T; Chen C
    Environ Pollut; 2019 Aug; 251():547-554. PubMed ID: 31108287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A robust amphiphilic ionic covalent organic framework intercalated into functionalized graphene oxide hybrid membranes for ultrafast extraction uranium from wastewater.
    Sun J; Hou Z; Wang J; Yang P; Li S; Liu C; Shen C; Liu Z
    Water Res; 2024 Nov; 265():122320. PubMed ID: 39197392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of U(VI) by sugar-based magnetic pseudo-graphene oxide and its application to authentic groundwater using electromagnetic system.
    Choi YL; Choi JS; Lingamdinne LP; Chang YY; Koduru JR; Ha JH; Yang JK
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22323-22337. PubMed ID: 31154648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extremely efficient aerogels of graphene oxide/graphene oxide nanoribbons/sodium alginate for uranium removal from wastewater solution.
    Jabbar AA; Hussain DH; Latif KH; Albukhaty S; Jasim AK; Sulaiman GM; Abomughaid MM
    Sci Rep; 2024 Jan; 14(1):1285. PubMed ID: 38218971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Efficiency Adsorption of Uranium from Wastewater Using Graphene Oxide/Graphene Oxide Nanoribbons/Chitosan Nanocomposite Aerogels.
    Jabbar AA; Hussain DH; Latif KH; Jasim AK; Al-Aqbi ZT; Alghannami HS; Albishri A
    ACS Omega; 2024 Jun; 9(25):27260-27268. PubMed ID: 38947775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of U(VI) from aqueous and polluted water solutions using magnetic Arachis hypogaea leaves powder impregnated into chitosan macromolecule.
    Yuvaraja G; Zheng NC; Pang Y; Su M; Chen DY; Kong LJ; Mehmood S; Subbaiah MV; Wen JC
    Int J Biol Macromol; 2020 Apr; 148():887-897. PubMed ID: 31945442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydroxyapatite modified ZIF-67 composite with abundant binding groups for the highly efficient and selective elimination of uranium (VI) from wastewater.
    Xuan K; Wang J; Gong Z; Wang X; Li J; Guo Y; Sun Z
    J Hazard Mater; 2022 Mar; 426():127834. PubMed ID: 34865903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Characteristics of U (VI) biosorption by biological adsorbent of platanus leaves].
    Nie XQ; Dong FQ; Liu MX; Liu N; Zhang W; Yang XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1290-4. PubMed ID: 23905338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite.
    Meng F; Yuan G; Larson SL; Ballard JH; Waggoner CA; Arslan Z; Han FX
    J Environ Radioact; 2017 Dec; 180():1-8. PubMed ID: 28968541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impregnation of magnetic - Momordica charantia leaf powder into chitosan for the removal of U(VI) from aqueous and polluted wastewater.
    Yuvaraja G; Su M; Chen DY; Pang Y; Kong LJ; Subbaiah MV; Wen JC; Reddy GM
    Int J Biol Macromol; 2020 Apr; 149():127-139. PubMed ID: 31978476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uranium(VI) remediation from aqueous environment using impregnated cellulose beads.
    Rule P; K B; Gonte RR
    J Environ Radioact; 2014 Oct; 136():22-9. PubMed ID: 24865891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay.
    Anirudhan TS; Bringle CD; Rijith S
    J Environ Radioact; 2010 Mar; 101(3):267-76. PubMed ID: 20045229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study.
    Wu QY; Lan JH; Wang CZ; Xiao CL; Zhao YL; Wei YZ; Chai ZF; Shi WQ
    J Phys Chem A; 2014 Mar; 118(11):2149-58. PubMed ID: 24592814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.