These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Grafting analysis of the periodic albino mutant of Xenopus laevis. Tompkins R Dev Biol; 1977 Jun; 57(2):460-4. PubMed ID: 873057 [No Abstract] [Full Text] [Related]
24. Cytoplasmic effect on gene function in Xenopus laevis. Yu HJ; Shi CP; Niu MC Sci Sin B; 1987 May; 30(5):487-94. PubMed ID: 3672098 [TBL] [Abstract][Full Text] [Related]
25. Changes in the utilization of cell surface carbohydrates are implicated in the adhesion of Xenopus laevis melanophores in vitro. Milos NC; Wilson HC Prog Clin Biol Res; 1986; 217B():239-42. PubMed ID: 3749182 [No Abstract] [Full Text] [Related]
26. Identification of novel hexapeptide agonists at the Xenopus laevis melanophore melanocortin receptor. Iuga AO; Reddy VB; Lerner EA Peptides; 2005 Nov; 26(11):2124-8. PubMed ID: 16269347 [TBL] [Abstract][Full Text] [Related]
27. The effect of the skin secretion of Xenopus laevis on its dermal melanophores. BURGERS AC; VAN OORDT GJ Acta Endocrinol (Copenh); 1956 Nov; 23(3):265-73. PubMed ID: 13381389 [No Abstract] [Full Text] [Related]
30. Developmental mutants isolated from wild-caught Xenopus laevis by gynogenesis and inbreeding. Krotoski DM; Reinschmidt DC; Tompkins R J Exp Zool; 1985 Mar; 233(3):443-9. PubMed ID: 3973558 [TBL] [Abstract][Full Text] [Related]
31. Experimental evidence for the accumulation of egg pigment in the brain cavities of Xenopus tadpoles. Kordylewski L J Exp Zool; 1983 Jul; 227(1):93-6. PubMed ID: 6684673 [TBL] [Abstract][Full Text] [Related]
32. Iridophore development in wild-type and periodic albino Xenopus larvae. MacMillan GJ; Gordon AM Experientia; 1981 Feb; 37(2):183-4. PubMed ID: 7238751 [No Abstract] [Full Text] [Related]
33. Comparison of Cu,Zn-superoxide dismutases of clawed frogs of the genus Xenopus. Peskin AV; Stolyarov SD Biochemistry (Mosc); 1997 Jul; 62(7):776-8. PubMed ID: 9331968 [TBL] [Abstract][Full Text] [Related]
34. Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles. Bruno L; Echarte MM; Levi V Cell Biochem Biophys; 2008; 52(3):191-201. PubMed ID: 19002657 [TBL] [Abstract][Full Text] [Related]
37. Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) type 4. Costin GE; Valencia JC; Vieira WD; Lamoreux ML; Hearing VJ J Cell Sci; 2003 Aug; 116(Pt 15):3203-12. PubMed ID: 12829739 [TBL] [Abstract][Full Text] [Related]
38. Identification of a tyrosinase (TYR) exon 4 deletion in albino ferrets (Mustela putorius furo). Blaszczyk WM; Distler C; Dekomien G; Arning L; Hoffmann KP; Epplen JT Anim Genet; 2007 Aug; 38(4):421-3. PubMed ID: 17655555 [TBL] [Abstract][Full Text] [Related]
39. Muscle opacity (mo), a new mutant gene in Xenopus laevis, linked to the rusty locus. Droin A Genet Res; 1991 Jun; 57(3):279-82. PubMed ID: 1889742 [TBL] [Abstract][Full Text] [Related]
40. Inherited color defects. Comparison between humans and snakes. Bechtel HB Int J Dermatol; 1991 Apr; 30(4):243-6. PubMed ID: 2050447 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]