BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31310940)

  • 1. In silico analysis of heparin and chondroitin sulfate binding mechanisms of the antiprotozoal drug berenil and pentamidine.
    Samsonov SA; Freza S; Zsila F
    Carbohydr Res; 2019 Aug; 482():107742. PubMed ID: 31310940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosaminoglycans are potential pharmacological targets for classic DNA minor groove binder drugs berenil and pentamidine.
    Zsila F
    Phys Chem Chem Phys; 2015 Oct; 17(38):24560-5. PubMed ID: 26344166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural binding evidence of the trypanocidal drugs berenil and pentacarinate active principles to a serine protease model.
    Perilo CS; Pereira MT; Santoro MM; Nagem RA
    Int J Biol Macromol; 2010 Jun; 46(5):502-11. PubMed ID: 20356563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Approaches Dissect Molecular Mechanisms Underlying Methylene Blue-Glycosaminoglycan Interactions.
    Maszota-Zieleniak M; Zsila F; Samsonov SA
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and spectroscopic characterization of the berenil and pentamidine complexes with the dodecanucleotide d(CGCGATATCGCG)2.
    Schmitz HU; Hübner W; Ackermann T
    Z Naturforsch C J Biosci; 1995; 50(3-4):263-274. PubMed ID: 7766260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational insights into heparin-small molecule interactions: Evaluation of the balance between stacking and non-stacking binding modes.
    Maszota-Zieleniak M; Zsila F; Samsonov SA
    Carbohydr Res; 2021 Sep; 507():108390. PubMed ID: 34271478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational insights into the role of calcium ions in protein-glycosaminoglycan systems.
    Kogut MM; Maszota-Zieleniak M; Marcisz M; Samsonov SA
    Phys Chem Chem Phys; 2021 Feb; 23(5):3519-3530. PubMed ID: 33514968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of glycosaminoglycans and their interactions with proteins.
    Gandhi NS; Mancera RL
    Chem Biol Drug Des; 2008 Dec; 72(6):455-82. PubMed ID: 19090915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR and molecular modeling studies of the interaction of berenil and pentamidine with d(CGCAAATTTGCG)2.
    Jenkins TC; Lane AN; Neidle S; Brown DG
    Eur J Biochem; 1993 May; 213(3):1175-84. PubMed ID: 8504811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting glycosaminoglycan surface protein interactions and implications for studying axonal growth.
    Griffith AR; Rogers CJ; Miller GM; Abrol R; Hsieh-Wilson LC; Goddard WA
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13697-13702. PubMed ID: 29229841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA multimode interaction with berenil and pentamidine; double helix stiffening, unbending and bending.
    Reinert KE
    J Biomol Struct Dyn; 1999 Oct; 17(2):311-31. PubMed ID: 10563581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulation-Based Prediction of Glycosaminoglycan Interactions with Drug Molecules.
    Maszota-Zieleniak M; Samsonov SA
    Methods Mol Biol; 2024; 2714():143-153. PubMed ID: 37676597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained model of glycosaminoglycans.
    Samsonov SA; Bichmann L; Pisabarro MT
    J Chem Inf Model; 2015 Jan; 55(1):114-24. PubMed ID: 25490039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects.
    Pieper JS; Hafmans T; Veerkamp JH; van Kuppevelt TH
    Biomaterials; 2000 Mar; 21(6):581-93. PubMed ID: 10701459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic insight into chondroitin-6-sulfate glycosaminoglycan chain through quantum mechanics calculations and molecular dynamics simulation.
    Cilpa G; Hyvönen MT; Koivuniemi A; Riekkola ML
    J Comput Chem; 2010 Jun; 31(8):1670-80. PubMed ID: 20087899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding.
    Herndon ME; Stipp CS; Lander AD
    Glycobiology; 1999 Feb; 9(2):143-55. PubMed ID: 9949192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic investigation of peptide-glycosaminoglycan interactions.
    Ishwar AR; Jeong KJ; Panitch A; Akkus O
    Appl Spectrosc; 2009 Jun; 63(6):636-41. PubMed ID: 19531291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small molecule inhibitors of protein interaction with glycosaminoglycans (SMIGs), a novel class of bioactive agents with anti-inflammatory properties.
    Harris N; Kogan FY; Il'kova G; Juhas S; Lahmy O; Gregor YI; Koppel J; Zhuk R; Gregor P
    Biochim Biophys Acta; 2014 Jan; 1840(1):245-54. PubMed ID: 24060749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro effect of diamidines on intracellular polyamines of Acanthamoeba polyphaga.
    Ogbunude PO; Asiri SA
    Drugs Exp Clin Res; 2001; 27(4):127-33. PubMed ID: 11822222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The B16F10 cell receptor for a metastasis-promoting site on laminin-1 is a heparan sulfate/chondroitin sulfate-containing proteoglycan.
    Engbring JA; Hoffman MP; Karmand AJ; Kleinman HK
    Cancer Res; 2002 Jun; 62(12):3549-54. PubMed ID: 12068003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.