These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 31311118)

  • 1. Study on the Numerical Simulation of the SLM Molten Pool Dynamic Behavior of a Nickel-Based Superalloy on the Workpiece Scale.
    Cao L; Yuan X
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the Evolution of Thermal Dynamics during Selective Laser Melting and Experimental Verification Using Online Monitoring.
    Bian P; Shao X; Du J; Ye F; Zhang X; Mu Y
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achievement of a Parameter Window for the Selective Laser Melting Formation of a GH3625 Alloy.
    Quan G; Deng Q; Zhao Y; Quan M; Wu D
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Thermal Stress on the Formation and Cracking Behavior of Nickel-Based Superalloys by Selective Laser Melting Based on a Coupled Thermo-Mechanical Model.
    Nie S; Li L; Wang Q; Zhao R; Lin X; Liu F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy.
    Wang JH; Ren J; Liu W; Wu XY; Gao MX; Bai PK
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Selective Laser Melting Additive Manufacturing Parameters in Inconel 718 Superalloy.
    Kladovasilakis N; Charalampous P; Tsongas K; Kostavelis I; Tzovaras D; Tzetzis D
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches.
    Ansari MJ; Nguyen DS; Park HS
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoscopic Simulation of Core-Shell Composite Powder Materials by Selective Laser Melting.
    Bao T; Tan Y; Xu Y
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Balling Behavior of Selective Laser Melting (SLM) Magnesium Alloy.
    Liu S; Guo H
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting.
    Ao X; Liu J; Xia H; Yang Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Analysis of Laser Additive Manufacturing of High Layer Thickness Pure Ti and Inconel 718 Alloy Materials Using Finite Element Method.
    Singh SN; Chowdhury S; Nirsanametla Y; Deepati AK; Prakash C; Singh S; Wu LY; Zheng HY; Pruncu C
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of Stress Field during the Selective Laser Melting Process of the Nickel-Based Superalloy, GH4169.
    Zhao Z; Li L; Tan L; Bai P; Li J; Wu L; Liao H; Cheng Y
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30149554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy.
    Shen H; Yan J; Niu X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Real-Time Monitoring Method for Selective Laser Melting of TA1 Materials Based on Radiation Detection of a Molten Pool.
    Zhou T; Huang W; Chen C
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Primary Dendrite Arm Spacing of the Inconel 718 Deposition Layer by Laser Cladding Based on a Multi-Scale Simulation.
    Jin Z; Kong X; Ma L; Dong J; Li X
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties.
    Trevisan F; Calignano F; Lorusso M; Pakkanen J; Aversa A; Ambrosio EP; Lombardi M; Fino P; Manfredi D
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Analysis on Microstructure and Residual Stress in Selective Laser Melting (SLM) with Varying Key Process Parameters.
    Bian P; Wang C; Xu K; Ye F; Zhang Y; Li L
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formability, Microstructure and Properties of Inconel 718 Superalloy Fabricated by Selective Laser Melting Additive Manufacture Technology.
    Liu X; Wang K; Hu P; He X; Yan B; Zhao X
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33669893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Overview of Additive Manufacturing Technologies-A Review to Technical Synthesis in Numerical Study of Selective Laser Melting.
    Razavykia A; Brusa E; Delprete C; Yavari R
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Laser Melting of Pre-Alloyed NiTi Powder: Single-Track Study and FE Modeling with Heat Source Calibration.
    Chernyshikhin SV; Firsov DG; Shishkovsky IV
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.