These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31311155)

  • 1. The Observation of Ligand-Binding-Relevant Open States of Fatty Acid Binding Protein by Molecular Dynamics Simulations and a Markov State Model.
    Guo Y; Duan M; Yang M
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31311155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of heart-type fatty acid binding protein in apo and holo forms, and hydration structure analyses in the binding cavity.
    Matsuoka D; Sugiyama S; Murata M; Matsuoka S
    J Phys Chem B; 2015 Jan; 119(1):114-27. PubMed ID: 25489786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of apo and holo forms of fatty acid binding protein 5 and cellular retinoic acid binding protein II reveal highly mobile protein, retinoic acid ligand, and water molecules.
    Hunter NH; Bakula BC; Bruce CD
    J Biomol Struct Dyn; 2018 May; 36(7):1893-1907. PubMed ID: 28566049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes.
    Herr FM; Aronson J; Storch J
    Biochemistry; 1996 Jan; 35(4):1296-303. PubMed ID: 8573586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty Acid and Retinol-Binding Protein: Unusual Protein Conformational and Cavity Changes Dictated by Ligand Fluctuations.
    Barletta GP; Franchini G; Corsico B; Fernandez-Alberti S
    J Chem Inf Model; 2019 Aug; 59(8):3545-3555. PubMed ID: 31365253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of ECD conformational transition mechanism of GLP-1R by molecular dynamics simulations and Markov state model.
    Zhang J; Bai Q; Pérez-Sánchez H; Shang S; An X; Yao X
    Phys Chem Chem Phys; 2019 Apr; 21(16):8470-8481. PubMed ID: 30957116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerted dynamic motions of an FABP4 model and its ligands revealed by microsecond molecular dynamics simulations.
    Li Y; Li X; Dong Z
    Biochemistry; 2014 Oct; 53(40):6409-17. PubMed ID: 25231537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Entry into Fatty Acid Binding Protein via Local Unfolding Instead of Gap Widening.
    Xiao T; Lu Y; Fan JS; Yang D
    Biophys J; 2020 Jan; 118(2):396-402. PubMed ID: 31870540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the interaction sites between fatty acid binding proteins and their ligands.
    Levin LB; Ganoth A; Amram S; Nachliel E; Gutman M; Tsfadia Y
    J Mol Model; 2010 May; 16(5):929-38. PubMed ID: 19834748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling fatty acid delivery from intestinal fatty acid binding protein to a membrane.
    Mihajlovic M; Lazaridis T
    Protein Sci; 2007 Sep; 16(9):2042-55. PubMed ID: 17660261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic interaction-mediated conformational changes of adipocyte fatty acid binding protein probed by molecular dynamics simulation.
    Yan F; Liu X; Zhang S; Su J; Zhang Q; Chen J
    J Biomol Struct Dyn; 2019 Sep; 37(14):3583-3595. PubMed ID: 30193557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid binding to the human transport proteins FABP3, FABP4, and FABP5 from a Ligand's perspective.
    Michler S; Schöffmann FA; Robaa D; Volmer J; Hinderberger D
    J Biol Chem; 2024 Jun; 300(6):107396. PubMed ID: 38777142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid binding proteins: same structure but different binding mechanisms? Molecular dynamics simulations of intestinal fatty acid binding protein.
    Friedman R; Nachliel E; Gutman M
    Biophys J; 2006 Mar; 90(5):1535-45. PubMed ID: 16361342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid exchange in crystal-confined fatty acid binding proteins: X-ray evidence and molecular dynamics explanation.
    Alvarez HA; Cousido-Siah A; Espinosa YR; Podjarny A; Carlevaro CM; Howard E
    Proteins; 2023 Nov; 91(11):1525-1534. PubMed ID: 37462340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic Insights into the Functional Instability of the Second Helix of Fatty Acid Binding Protein.
    Cheng P; Liu D; Chee PX; Yang D; Long D
    Biophys J; 2019 Jul; 117(2):239-246. PubMed ID: 31301805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of the fatty acid-binding protein ReP1-NCXSQ with lipid membranes. Influence of the membrane electric field on binding and orientation.
    Galassi VV; Villarreal MA; Posada V; Montich GG
    Biochim Biophys Acta; 2014 Mar; 1838(3):910-20. PubMed ID: 24269200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of a human myelin protein P2 portal region mutant indicate opening of the β barrel in fatty acid binding proteins.
    Laulumaa S; Nieminen T; Raasakka A; Krokengen OC; Safaryan A; Hallin EI; Brysbaert G; Lensink MF; Ruskamo S; Vattulainen I; Kursula P
    BMC Struct Biol; 2018 Jun; 18(1):8. PubMed ID: 29940944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved charged amino acids are key determinants for fatty acid binding proteins (FABPs)-membrane interactions. A multi-methodological computational approach.
    Zamarreño F; Giorgetti A; Amundarain MJ; Viso JF; Córsico B; Costabel MD
    J Biomol Struct Dyn; 2018 Mar; 36(4):861-877. PubMed ID: 28298157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Dynamic Mechanism of Long-Flexible Fatty Acid Binding to Fatty Acid Binding Protein: Resolving the Long-Standing Debate.
    Chen H; Guo Y; Ye S; Zhang J; Zhang H; Liu N; Zhou R; Hou T; Xia H; Kang Y; Duan M
    J Chem Inf Model; 2023 Aug; 63(16):5232-5243. PubMed ID: 37574904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High relaxivity supramolecular adducts between human-liver fatty-acid-binding protein and amphiphilic Gd(III) complexes: structural basis for the design of intracellular targeting MRI probes.
    D'Onofrio M; Gianolio E; Ceccon A; Arena F; Zanzoni S; Fushman D; Aime S; Molinari H; Assfalg M
    Chemistry; 2012 Aug; 18(32):9919-28. PubMed ID: 22763949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.