These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 31311497)
1. A multivariate Poisson-log normal mixture model for clustering transcriptome sequencing data. Silva A; Rothstein SJ; McNicholas PD; Subedi S BMC Bioinformatics; 2019 Jul; 20(1):394. PubMed ID: 31311497 [TBL] [Abstract][Full Text] [Related]
2. Finite mixtures of matrix variate Poisson-log normal distributions for three-way count data. Silva A; Qin X; Rothstein SJ; McNicholas PD; Subedi S Bioinformatics; 2023 May; 39(5):. PubMed ID: 37018147 [TBL] [Abstract][Full Text] [Related]
3. A multi-Poisson dynamic mixture model to cluster developmental patterns of gene expression by RNA-seq. Ye M; Wang Z; Wang Y; Wu R Brief Bioinform; 2015 Mar; 16(2):205-15. PubMed ID: 24817567 [TBL] [Abstract][Full Text] [Related]
4. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate. Liu X; Shi X; Chen C; Zhang L BMC Bioinformatics; 2015 Oct; 16():332. PubMed ID: 26475308 [TBL] [Abstract][Full Text] [Related]
5. Variational inference for rare variant detection in deep, heterogeneous next-generation sequencing data. Zhang F; Flaherty P BMC Bioinformatics; 2017 Jan; 18(1):45. PubMed ID: 28103803 [TBL] [Abstract][Full Text] [Related]
6. XMRF: an R package to fit Markov Networks to high-throughput genetics data. Wan YW; Allen GI; Baker Y; Yang E; Ravikumar P; Anderson M; Liu Z BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):69. PubMed ID: 27586041 [TBL] [Abstract][Full Text] [Related]
7. Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Rau A; Maugis-Rabusseau C; Martin-Magniette ML; Celeux G Bioinformatics; 2015 May; 31(9):1420-7. PubMed ID: 25563332 [TBL] [Abstract][Full Text] [Related]
8. Estimation of evolutionary parameters using short, random and partial sequences from mixed samples of anonymous individuals. Wu SH; Rodrigo AG BMC Bioinformatics; 2015 Nov; 16():357. PubMed ID: 26536860 [TBL] [Abstract][Full Text] [Related]
9. A gradient Markov chain Monte Carlo algorithm for computing multivariate maximum likelihood estimates and posterior distributions: mixture dose-response assessment. Li R; Englehardt JD; Li X Risk Anal; 2012 Feb; 32(2):345-59. PubMed ID: 21906114 [TBL] [Abstract][Full Text] [Related]
10. Reinforced mixture learning. Le Y; Zhou F; Bai Y Neural Netw; 2023 Aug; 165():175-184. PubMed ID: 37307663 [TBL] [Abstract][Full Text] [Related]
11. PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data. Zhang H; Xu J; Jiang N; Hu X; Luo Z Stat Med; 2015 Apr; 34(9):1577-89. PubMed ID: 25641202 [TBL] [Abstract][Full Text] [Related]
12. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data. Chen S; Hua K; Cui H; Jiang R BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382 [TBL] [Abstract][Full Text] [Related]
13. Markov chain Monte Carlo methods in biostatistics. Gelman A; Rubin DB Stat Methods Med Res; 1996 Dec; 5(4):339-55. PubMed ID: 9004377 [TBL] [Abstract][Full Text] [Related]
14. caBIG VISDA: modeling, visualization, and discovery for cluster analysis of genomic data. Zhu Y; Li H; Miller DJ; Wang Z; Xuan J; Clarke R; Hoffman EP; Wang Y BMC Bioinformatics; 2008 Sep; 9():383. PubMed ID: 18801195 [TBL] [Abstract][Full Text] [Related]
15. FunPat: function-based pattern analysis on RNA-seq time series data. Sanavia T; Finotello F; Di Camillo B BMC Genomics; 2015; 16(Suppl 6):S2. PubMed ID: 26046293 [TBL] [Abstract][Full Text] [Related]
16. Network analysis for count data with excess zeros. Choi H; Gim J; Won S; Kim YJ; Kwon S; Park C BMC Genet; 2017 Nov; 18(1):93. PubMed ID: 29110633 [TBL] [Abstract][Full Text] [Related]
17. An effective differential expression analysis of deep-sequencing data based on the Poisson log-normal model. Wu J; Zhao X; Lin Z; Shao Z J Bioinform Comput Biol; 2015 Apr; 13(2):1550001. PubMed ID: 25385084 [TBL] [Abstract][Full Text] [Related]
18. Fitting a linear-linear piecewise growth mixture model with unknown knots: A comparison of two common approaches to inference. Kohli N; Hughes J; Wang C; Zopluoglu C; Davison ML Psychol Methods; 2015 Jun; 20(2):259-75. PubMed ID: 25867487 [TBL] [Abstract][Full Text] [Related]
19. Detecting Multivariate Gene Interactions in RNA-Seq Data Using Optimal Bayesian Classification. Knight JM; Ivanov I; Triff K; Chapkin RS; Dougherty ER IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):484-493. PubMed ID: 26441451 [TBL] [Abstract][Full Text] [Related]
20. A Local Poisson Graphical Model for inferring networks from sequencing data. Allen GI; Liu Z IEEE Trans Nanobioscience; 2013 Sep; 12(3):189-98. PubMed ID: 23955777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]