These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31311836)

  • 1. Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes.
    Su H; Liu Y; Liu C; Shi Q; Huang Y; Han F
    Plant Cell; 2019 Sep; 31(9):2035-2051. PubMed ID: 31311836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CENH3 morphogenesis reveals dynamic centromere associations during synaptonemal complex formation and the progression through male meiosis in hexaploid wheat.
    Sepsi A; Higgins JD; Heslop-Harrison JS; Schwarzacher T
    Plant J; 2017 Jan; 89(2):235-249. PubMed ID: 27624968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure.
    Li B; Choulet F; Heng Y; Hao W; Paux E; Liu Z; Yue W; Jin W; Feuillet C; Zhang X
    Plant J; 2013 Mar; 73(6):952-65. PubMed ID: 23253213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus.
    Li Y; Zuo S; Zhang Z; Li Z; Han J; Chu Z; Hasterok R; Wang K
    Plant J; 2018 Mar; 93(6):1088-1101. PubMed ID: 29381236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChIP-cloning analysis uncovers centromere-specific retrotransposons in Brassica nigra and reveals their rapid diversification in Brassica allotetraploids.
    Wang GX; He QY; Zhao H; Cai ZX; Guo N; Zong M; Han S; Liu F; Jin WW
    Chromosoma; 2019 Jun; 128(2):119-131. PubMed ID: 30993455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of two CENH3 genes and their roles in wheat evolution.
    Yuan J; Guo X; Hu J; Lv Z; Han F
    New Phytol; 2015 Apr; 206(2):839-51. PubMed ID: 25557089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification and adaptation of centromeric repeats in polyploid switchgrass species.
    Yang X; Zhao H; Zhang T; Zeng Z; Zhang P; Zhu B; Han Y; Braz GT; Casler MD; Schmutz J; Jiang J
    New Phytol; 2018 Jun; 218(4):1645-1657. PubMed ID: 29577299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome.
    International Wheat Genome Sequencing Consortium (IWGSC)
    Science; 2014 Jul; 345(6194):1251788. PubMed ID: 25035500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-B-form DNA tends to form in centromeric regions and has undergone changes in polyploid oat subgenomes.
    Liu Q; Yi C; Zhang Z; Su H; Liu C; Huang Y; Li W; Hu X; Liu C; Birchler JA; Liu Y; Han F
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2211683120. PubMed ID: 36574697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centromere repositioning and shifts in wheat evolution.
    Zhao J; Xie Y; Kong C; Lu Z; Jia H; Ma Z; Zhang Y; Cui D; Ru Z; Wang Y; Appels R; Jia J; Zhang X
    Plant Commun; 2023 Jul; 4(4):100556. PubMed ID: 36739481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres.
    Zhang W; Friebe B; Gill BS; Jiang J
    Chromosoma; 2010 Oct; 119(5):553-63. PubMed ID: 20499078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeatless and repeat-based centromeres in potato: implications for centromere evolution.
    Gong Z; Wu Y; Koblízková A; Torres GA; Wang K; Iovene M; Neumann P; Zhang W; Novák P; Buell CR; Macas J; Jiang J
    Plant Cell; 2012 Sep; 24(9):3559-74. PubMed ID: 22968715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres.
    Zhang T; Talbert PB; Zhang W; Wu Y; Yang Z; Henikoff JG; Henikoff S; Jiang J
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):E4875-83. PubMed ID: 24191062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres.
    Liu Z; Yue W; Li D; Wang RR; Kong X; Lu K; Wang G; Dong Y; Jin W; Zhang X
    Chromosoma; 2008 Oct; 117(5):445-56. PubMed ID: 18496705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae.
    Ávila Robledillo L; Neumann P; Koblížková A; Novák P; Vrbová I; Macas J
    Mol Biol Evol; 2020 Aug; 37(8):2341-2356. PubMed ID: 32259249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA satellite and chromatin organization at mouse centromeres and pericentromeres.
    Packiaraj J; Thakur J
    Genome Biol; 2024 Feb; 25(1):52. PubMed ID: 38378611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-B-form DNA is associated with centromere stability in newly-formed polyploid wheat.
    Yi C; Liu Q; Huang Y; Liu C; Guo X; Fan C; Zhang K; Liu Y; Han F
    Sci China Life Sci; 2024 Jul; 67(7):1479-1488. PubMed ID: 38639838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice.
    Qi L; Friebe B; Wu J; Gu Y; Qian C; Gill BS
    Funct Integr Genomics; 2010 Nov; 10(4):477-92. PubMed ID: 20842403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis.
    Martinez-Perez E; Shaw P; Aragon-Alcaide L; Moore G
    Plant J; 2003 Oct; 36(1):21-9. PubMed ID: 12974808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terminal regions of wheat chromosomes select their pairing partners in meiosis.
    Corredor E; Lukaszewski AJ; Pachón P; Allen DC; Naranjo T
    Genetics; 2007 Oct; 177(2):699-706. PubMed ID: 17720899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.