These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 31311857)
1. Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from Cuevasanta E; Reyes AM; Zeida A; Mastrogiovanni M; De Armas MI; Radi R; Alvarez B; Trujillo M J Biol Chem; 2019 Sep; 294(37):13593-13605. PubMed ID: 31311857 [TBL] [Abstract][Full Text] [Related]
2. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Hugo M; Turell L; Manta B; Botti H; Monteiro G; Netto LE; Alvarez B; Radi R; Trujillo M Biochemistry; 2009 Oct; 48(40):9416-26. PubMed ID: 19737009 [TBL] [Abstract][Full Text] [Related]
3. Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis. Hugo M; Van Laer K; Reyes AM; Vertommen D; Messens J; Radi R; Trujillo M J Biol Chem; 2014 Feb; 289(8):5228-39. PubMed ID: 24379404 [TBL] [Abstract][Full Text] [Related]
4. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide. Cuevasanta E; Lange M; Bonanata J; Coitiño EL; Ferrer-Sueta G; Filipovic MR; Alvarez B J Biol Chem; 2015 Nov; 290(45):26866-26880. PubMed ID: 26269587 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Trujillo M; Ferrer-Sueta G; Thomson L; Flohé L; Radi R Subcell Biochem; 2007; 44():83-113. PubMed ID: 18084891 [TBL] [Abstract][Full Text] [Related]
6. Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation. Reyes AM; Hugo M; Trostchansky A; Capece L; Radi R; Trujillo M Free Radic Biol Med; 2011 Jul; 51(2):464-73. PubMed ID: 21571062 [TBL] [Abstract][Full Text] [Related]
7. Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): Structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol. Kumar A; Balakrishna AM; Nartey W; Manimekalai MSS; Grüber G Free Radic Biol Med; 2016 Aug; 97():588-601. PubMed ID: 27417938 [TBL] [Abstract][Full Text] [Related]
8. Multiscale Modeling of Thiol Overoxidation in Peroxiredoxins by Hydrogen Peroxide. Semelak JA; Battistini F; Radi R; Trujillo M; Zeida A; Estrin DA J Chem Inf Model; 2020 Feb; 60(2):843-853. PubMed ID: 31718175 [TBL] [Abstract][Full Text] [Related]
9. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Ellis HR; Poole LB Biochemistry; 1997 Oct; 36(43):13349-56. PubMed ID: 9341227 [TBL] [Abstract][Full Text] [Related]
10. Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing. Portillo-Ledesma S; Randall LM; Parsonage D; Dalla Rizza J; Karplus PA; Poole LB; Denicola A; Ferrer-Sueta G Biochemistry; 2018 Jun; 57(24):3416-3424. PubMed ID: 29553725 [TBL] [Abstract][Full Text] [Related]
11. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. Peskin AV; Dickerhof N; Poynton RA; Paton LN; Pace PE; Hampton MB; Winterbourn CC J Biol Chem; 2013 May; 288(20):14170-14177. PubMed ID: 23543738 [TBL] [Abstract][Full Text] [Related]
12. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase. Reyes AM; Vazquez DS; Zeida A; Hugo M; Piñeyro MD; De Armas MI; Estrin D; Radi R; Santos J; Trujillo M Free Radic Biol Med; 2016 Dec; 101():249-260. PubMed ID: 27751911 [TBL] [Abstract][Full Text] [Related]
13. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Carballal S; Radi R; Kirk MC; Barnes S; Freeman BA; Alvarez B Biochemistry; 2003 Aug; 42(33):9906-14. PubMed ID: 12924939 [TBL] [Abstract][Full Text] [Related]
14. Biological chemistry of hydrogen sulfide and persulfides. Cuevasanta E; Möller MN; Alvarez B Arch Biochem Biophys; 2017 Mar; 617():9-25. PubMed ID: 27697462 [TBL] [Abstract][Full Text] [Related]
15. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. Baker LM; Poole LB J Biol Chem; 2003 Mar; 278(11):9203-11. PubMed ID: 12514184 [TBL] [Abstract][Full Text] [Related]
16. Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis. Zeida A; Reyes AM; Lichtig P; Hugo M; Vazquez DS; Santos J; González Flecha FL; Radi R; Estrin DA; Trujillo M Biochemistry; 2015 Dec; 54(49):7237-47. PubMed ID: 26569371 [TBL] [Abstract][Full Text] [Related]
17. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Mishanina TV; Libiad M; Banerjee R Nat Chem Biol; 2015 Jul; 11(7):457-64. PubMed ID: 26083070 [TBL] [Abstract][Full Text] [Related]
18. The active site architecture in peroxiredoxins: a case study on Mycobacterium tuberculosis AhpE. Pedre B; van Bergen LA; Palló A; Rosado LA; Dufe VT; Molle IV; Wahni K; Erdogan H; Alonso M; Proft FD; Messens J Chem Commun (Camb); 2016 Aug; 52(67):10293-6. PubMed ID: 27471753 [TBL] [Abstract][Full Text] [Related]
19. Acidity and nucleophilic reactivity of glutathione persulfide. Benchoam D; Semelak JA; Cuevasanta E; Mastrogiovanni M; Grassano JS; Ferrer-Sueta G; Zeida A; Trujillo M; Möller MN; Estrin DA; Alvarez B J Biol Chem; 2020 Nov; 295(46):15466-15481. PubMed ID: 32873707 [TBL] [Abstract][Full Text] [Related]
20. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Ferrer-Sueta G; Manta B; Botti H; Radi R; Trujillo M; Denicola A Chem Res Toxicol; 2011 Apr; 24(4):434-50. PubMed ID: 21391663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]