These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31311866)

  • 1. Learning data-driven discretizations for partial differential equations.
    Bar-Sinai Y; Hoyer S; Hickey J; Brenner MP
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15344-15349. PubMed ID: 31311866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particles to partial differential equations parsimoniously.
    Arbabi H; Kevrekidis IG
    Chaos; 2021 Mar; 31(3):033137. PubMed ID: 33810723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks.
    Karnakov P; Litvinov S; Koumoutsakos P
    PNAS Nexus; 2024 Jan; 3(1):pgae005. PubMed ID: 38250513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Hybrid Deep Learning Method for Predicting the Flow Fields of Biomimetic Flapping Wings.
    Hu F; Tay W; Zhou Y; Khoo B
    Biomimetics (Basel); 2024 Jan; 9(2):. PubMed ID: 38392118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving high-dimensional partial differential equations using deep learning.
    Han J; Jentzen A; E W
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8505-8510. PubMed ID: 30082389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can physics-informed neural networks beat the finite element method?
    Grossmann TG; Komorowska UJ; Latz J; Schönlieb CB
    IMA J Appl Math; 2024 Jan; 89(1):143-174. PubMed ID: 38933736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-accelerated computational fluid dynamics.
    Kochkov D; Smith JA; Alieva A; Wang Q; Brenner MP; Hoyer S
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34006645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations.
    Jha N; Perfilieva I; Kritika
    MethodsX; 2023; 10():102206. PubMed ID: 37206645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning effective stochastic differential equations from microscopic simulations: Linking stochastic numerics to deep learning.
    Dietrich F; Makeev A; Kevrekidis G; Evangelou N; Bertalan T; Reich S; Kevrekidis IG
    Chaos; 2023 Feb; 33(2):023121. PubMed ID: 36859209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics.
    Español P; Donev A
    J Chem Phys; 2015 Dec; 143(23):234104. PubMed ID: 26696043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-scale PDEs from fine-scale observations via machine learning.
    Lee S; Kooshkbaghi M; Spiliotis K; Siettos CI; Kevrekidis IG
    Chaos; 2020 Jan; 30(1):013141. PubMed ID: 32013472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-learning-based data-driven discovery of nonlinear phase-field dynamics.
    Kiyani E; Silber S; Kooshkbaghi M; Karttunen M
    Phys Rev E; 2022 Dec; 106(6-2):065303. PubMed ID: 36671129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promising directions of machine learning for partial differential equations.
    Brunton SL; Kutz JN
    Nat Comput Sci; 2024 Jun; ():. PubMed ID: 38942926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Solutions of Variable Coefficient Higher-Order Partial Differential Equations Arising in Beam Models.
    Ghafoor A; Haq S; Hussain M; Abdeljawad T; Alqudah MA
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects.
    Dick C; Georgii J; Westermann R
    IEEE Trans Vis Comput Graph; 2011 Nov; 17(11):1663-75. PubMed ID: 21173453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physics-informed learning of governing equations from scarce data.
    Chen Z; Liu Y; Sun H
    Nat Commun; 2021 Oct; 12(1):6136. PubMed ID: 34675223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tackling the curse of dimensionality with physics-informed neural networks.
    Hu Z; Shukla K; Karniadakis GE; Kawaguchi K
    Neural Netw; 2024 Aug; 176():106369. PubMed ID: 38754287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure at coarse-grained resolutions from supervised machine learning.
    Jackson NE; Bowen AS; Antony LW; Webb MA; Vishwanath V; de Pablo JJ
    Sci Adv; 2019 Mar; 5(3):eaav1190. PubMed ID: 30915396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.