These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 31311880)

  • 1. A SpoIID Homolog Cleaves Glycan Strands at the Chlamydial Division Septum.
    Jacquier N; Yadav AK; Pillonel T; Viollier PH; Cava F; Greub G
    mBio; 2019 Jul; 10(4):. PubMed ID: 31311880
    [No Abstract]   [Full Text] [Related]  

  • 2. Chlamydial MreB Directs Cell Division and Peptidoglycan Synthesis in Escherichia coli in the Absence of FtsZ Activity.
    Ranjit DK; Liechti GW; Maurelli AT
    mBio; 2020 Feb; 11(1):. PubMed ID: 32071268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly.
    Jacquier N; Viollier PH; Greub G
    FEMS Microbiol Rev; 2015 Mar; 39(2):262-75. PubMed ID: 25670734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell wall precursors are required to organize the chlamydial division septum.
    Jacquier N; Frandi A; Pillonel T; Viollier PH; Greub G
    Nat Commun; 2014 Apr; 5():3578. PubMed ID: 24709914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions Screenings Unearth Potential New Divisome Components in the
    Bayramova F; Jacquier N; Greub G
    Microorganisms; 2019 Nov; 7(12):. PubMed ID: 31779160
    [No Abstract]   [Full Text] [Related]  

  • 6. Disassembly of a Medial Transenvelope Structure by Antibiotics during Intracellular Division.
    Jacquier N; Frandi A; Viollier PH; Greub G
    Chem Biol; 2015 Sep; 22(9):1217-27. PubMed ID: 26364930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical Role for the Extended N Terminus of Chlamydial MreB in Directing Its Membrane Association and Potential Interaction with Divisome Proteins.
    Lee J; Cox JV; Ouellette SP
    J Bacteriol; 2020 Apr; 202(9):. PubMed ID: 32041796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpoIID-mediated peptidoglycan degradation is required throughout engulfment during Bacillus subtilis sporulation.
    Gutierrez J; Smith R; Pogliano K
    J Bacteriol; 2010 Jun; 192(12):3174-86. PubMed ID: 20382772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Unique N-Terminal Domain of Chlamydial Bactofilin Mediates Its Membrane Localization and Ring-Forming Properties.
    Lee J; Cox JV; Ouellette SP
    J Bacteriol; 2023 Jun; 205(6):e0009223. PubMed ID: 37191556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.
    Liechti G; Kuru E; Packiam M; Hsu YP; Tekkam S; Hall E; Rittichier JT; VanNieuwenhze M; Brun YV; Maurelli AT
    PLoS Pathog; 2016 May; 12(5):e1005590. PubMed ID: 27144308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dynamic, Ring-Forming Bactofilin Critical for Maintaining Cell Size in the Obligate Intracellular Bacterium Chlamydia trachomatis.
    Brockett MR; Lee J; Cox JV; Liechti GW; Ouellette SP
    Infect Immun; 2021 Jul; 89(8):e0020321. PubMed ID: 33941579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides.
    Yahashiri A; Jorgenson MA; Weiss DS
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11347-52. PubMed ID: 26305949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal Structures of the SpoIID Lytic Transglycosylases Essential for Bacterial Sporulation.
    Nocadello S; Minasov G; Shuvalova LS; Dubrovska I; Sabini E; Anderson WF
    J Biol Chem; 2016 Jul; 291(29):14915-26. PubMed ID: 27226615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Screens Identify Additional Genes Implicated in Envelope Remodeling during the Engulfment Stage of Bacillus subtilis Sporulation.
    Chan H; Taib N; Gilmore MC; Mohamed AMT; Hanna K; Luhur J; Nguyen H; Hafiz E; Cava F; Gribaldo S; Rudner D; Rodrigues CDA
    mBio; 2022 Oct; 13(5):e0173222. PubMed ID: 36066101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Ardissone S; Greub G
    Appl Environ Microbiol; 2024 Feb; 90(2):e0068123. PubMed ID: 38214519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FtsZ-independent septal recruitment and function of cell wall remodelling enzymes in chlamydial pathogens.
    Frandi A; Jacquier N; Théraulaz L; Greub G; Viollier PH
    Nat Commun; 2014 Jun; 5():4200. PubMed ID: 24953095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An NlpC/P60 protein catalyzes a key step in peptidoglycan recycling at the intersection of energy recovery, cell division and immune evasion in the intracellular pathogen Chlamydia trachomatis.
    Reuter J; Otten C; Jacquier N; Lee J; Mengin-Lecreulx D; Löckener I; Kluj R; Mayer C; Corona F; Dannenberg J; Aeby S; Bühl H; Greub G; Vollmer W; Ouellette SP; Schneider T; Henrichfreise B
    PLoS Pathog; 2023 Feb; 19(2):e1011047. PubMed ID: 36730465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking the Peptidoglycan Synthesis Protein Complex with Asymmetric Cell Division during
    Muchová K; Chromiková Z; Barák I
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32630428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.
    Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G
    Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Waddlia genome: a window into chlamydial biology.
    Bertelli C; Collyn F; Croxatto A; Rückert C; Polkinghorne A; Kebbi-Beghdadi C; Goesmann A; Vaughan L; Greub G
    PLoS One; 2010 May; 5(5):e10890. PubMed ID: 20531937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.