BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31311920)

  • 41. The deltaF508 mutation in the cystic fibrosis transmembrane conductance regulator alters control of essential fatty acid utilization in epithelial cells.
    Bhura-Bandali FN; Suh M; Man SF; Clandinin MT
    J Nutr; 2000 Dec; 130(12):2870-5. PubMed ID: 11110839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Physiology and Pathophysiology of Pancreatic Ductal Secretion: The Background for Clinicians.
    Pallagi P; Hegyi P; Rakonczay Z
    Pancreas; 2015 Nov; 44(8):1211-33. PubMed ID: 26465950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Understanding childhood diabetes mellitus: new pathophysiological aspects.
    Grulich-Henn J; Klose D
    J Inherit Metab Dis; 2018 Jan; 41(1):19-27. PubMed ID: 29247329
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acute Recurrent and Chronic Pancreatitis as Initial Manifestations of Cystic Fibrosis and Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders.
    Baldwin C; Zerofsky M; Sathe M; Troendle DM; Perito ER
    Pancreas; 2019 Aug; 48(7):888-893. PubMed ID: 31268981
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CFTR drives Na+-nHCO-3 cotransport in pancreatic duct cells: a basis for defective HCO-3 secretion in CF.
    Shumaker H; Amlal H; Frizzell R; Ulrich CD; Soleimani M
    Am J Physiol; 1999 Jan; 276(1):C16-25. PubMed ID: 9886916
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dysregulation of proteoglycan production by intrahepatic biliary epithelial cells bearing defective (delta-f508) cystic fibrosis transmembrane conductance regulator.
    Bhaskar KR; Turner BS; Grubman SA; Jefferson DM; LaMont JT
    Hepatology; 1998 Jan; 27(1):7-14. PubMed ID: 9425910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The cystic fibrosis transmembrane conductance regulator as a marker of human pancreatic duct development.
    Hyde K; Reid CJ; Tebbutt SJ; Weide L; Hollingsworth MA; Harris A
    Gastroenterology; 1997 Sep; 113(3):914-9. PubMed ID: 9287984
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generation and phenotype of cell lines derived from CF and non-CF mice that carry the H-2K(b)-tsA58 transgene.
    Takacs-Jarrett M; Sweeney WE; Avner ED; Cotton CU
    Am J Physiol Cell Physiol; 2001 Jan; 280(1):C228-36. PubMed ID: 11121394
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Relation between gene mutations and pancreatic exocrine function in patients with cystic fibrosis].
    Radivojević D; Guć-Sćekić M; Djurisić M; Lalić T; Minić P; Kanavakis E
    Srp Arh Celok Lek; 2001; 129 Suppl 1():6-9. PubMed ID: 15637983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Total pancreatectomy with islet autotransplantation in a pancreatic-sufficient cystic fibrosis patient.
    St Onge I; Nathan JD; Abu-El-Haija M; Chini BA
    J Cyst Fibros; 2019 Sep; 18(5):e53-e55. PubMed ID: 31420175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Induction of a cAMP-stimulated chloride secretion in regenerating poorly differentiated airway epithelial cells by adenovirus-mediated CFTR gene transfer.
    Dupuit F; Chinet T; Zahm JM; Pierrot D; Hinnrasky J; Kaplan H; Bonnet N; Puchelle E
    Hum Gene Ther; 1997 Aug; 8(12):1439-50. PubMed ID: 9287144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis.
    McPhail GL; Clancy JP
    Drugs Today (Barc); 2013 Apr; 49(4):253-60. PubMed ID: 23616952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. IL-17 primes airway epithelial cells lacking functional Cystic Fibrosis Transmembrane conductance Regulator (CFTR) to increase NOD1 responses.
    Roussel L; Rousseau S
    Biochem Biophys Res Commun; 2010 Jan; 391(1):505-9. PubMed ID: 19931506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Management of endocrine disease: Cystic fibrosis-related diabetes: novel pathogenic insights opening new therapeutic avenues.
    Barrio R
    Eur J Endocrinol; 2015 Apr; 172(4):R131-41. PubMed ID: 25336504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transfer of the Cystic Fibrosis Transmembrane Conductance Regulator to Human Cystic Fibrosis Cells Mediated by Extracellular Vesicles.
    Vituret C; Gallay K; Confort MP; Ftaich N; Matei CI; Archer F; Ronfort C; Mornex JF; Chanson M; Di Pietro A; Boulanger P; Hong SS
    Hum Gene Ther; 2016 Feb; 27(2):166-83. PubMed ID: 26886833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Augmentation of Cystic Fibrosis Transmembrane Conductance Regulator Function in Human Bronchial Epithelial Cells via SLC6A14-Dependent Amino Acid Uptake. Implications for Treatment of Cystic Fibrosis.
    Ahmadi S; Wu YS; Li M; Ip W; Lloyd-Kuzik A; Di Paola M; Du K; Xia S; Lew A; Bozoky Z; Forman-Kay J; Bear CE; Gonska T
    Am J Respir Cell Mol Biol; 2019 Dec; 61(6):755-764. PubMed ID: 31189070
    [TBL] [Abstract][Full Text] [Related]  

  • 57. miR-16 rescues F508del-CFTR function in native cystic fibrosis epithelial cells.
    Kumar P; Bhattacharyya S; Peters KW; Glover ML; Sen A; Cox RT; Kundu S; Caohuy H; Frizzell RA; Pollard HB; Biswas R
    Gene Ther; 2015 Nov; 22(11):908-16. PubMed ID: 26133785
    [TBL] [Abstract][Full Text] [Related]  

  • 58. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis.
    Vijftigschild LA; Berkers G; Dekkers JF; Zomer-van Ommen DD; Matthes E; Kruisselbrink E; Vonk A; Hensen CE; Heida-Michel S; Geerdink M; Janssens HM; van de Graaf EA; Bronsveld I; de Winter-de Groot KM; Majoor CJ; Heijerman HG; de Jonge HR; Hanrahan JW; van der Ent CK; Beekman JM
    Eur Respir J; 2016 Sep; 48(3):768-79. PubMed ID: 27471203
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pancreatic polypeptide in cystic fibrosis.
    Nousia-Arvanitakis S; Tomita T; Desai N; Kimmel JR
    Arch Pathol Lab Med; 1985 Aug; 109(8):722-6. PubMed ID: 3893382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Long-term expanding human airway organoids for disease modeling.
    Sachs N; Papaspyropoulos A; Zomer-van Ommen DD; Heo I; Böttinger L; Klay D; Weeber F; Huelsz-Prince G; Iakobachvili N; Amatngalim GD; de Ligt J; van Hoeck A; Proost N; Viveen MC; Lyubimova A; Teeven L; Derakhshan S; Korving J; Begthel H; Dekkers JF; Kumawat K; Ramos E; van Oosterhout MF; Offerhaus GJ; Wiener DJ; Olimpio EP; Dijkstra KK; Smit EF; van der Linden M; Jaksani S; van de Ven M; Jonkers J; Rios AC; Voest EE; van Moorsel CH; van der Ent CK; Cuppen E; van Oudenaarden A; Coenjaerts FE; Meyaard L; Bont LJ; Peters PJ; Tans SJ; van Zon JS; Boj SF; Vries RG; Beekman JM; Clevers H
    EMBO J; 2019 Feb; 38(4):. PubMed ID: 30643021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.