These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31312009)

  • 1. Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces.
    Patabadige DEW; Millet LJ; Aufrecht JA; Shankles PG; Standaert RF; Retterer ST; Doktycz MJ
    Sci Rep; 2019 Jul; 9(1):10272. PubMed ID: 31312009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exometabolite Dynamics over Stationary Phase Reveal Strain-Specific Responses.
    Chodkowski JL; Shade A
    mSystems; 2020 Dec; 5(6):. PubMed ID: 33361318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes.
    Krafft B; Panneerselvam R; Geissler D; Belder D
    Anal Bioanal Chem; 2020 Jan; 412(2):267-277. PubMed ID: 31797018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical and other transport properties of nanoporous track-etched membranes studied by the current switch-off technique.
    Yaroshchuk A; Zhukova O; Ulbricht M; Ribitsch V
    Langmuir; 2005 Jul; 21(15):6872-82. PubMed ID: 16008399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection.
    Crespi A; Gu Y; Ngamsom B; Hoekstra HJ; Dongre C; Pollnau M; Ramponi R; van den Vlekkert HH; Watts P; Cerullo G; Osellame R
    Lab Chip; 2010 May; 10(9):1167-73. PubMed ID: 20390136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface.
    Kim Y; Kuczenski B; LeDuc PR; Messner WC
    Lab Chip; 2009 Sep; 9(17):2603-9. PubMed ID: 19680585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-rejection, electrokinetic and electrochemical properties of a nanoporous track-etched membrane and their interpretation by means of space charge model.
    Yaroshchuk A; Boiko Y; Makovetskiy A
    Langmuir; 2009 Aug; 25(16):9605-14. PubMed ID: 19585984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially resolved analysis of glycolipids and metabolites in living Synechococcus sp. PCC 7002 using nanospray desorption electrospray ionization.
    Lanekoff I; Geydebrekht O; Pinchuk GE; Konopka AE; Laskin J
    Analyst; 2013 Apr; 138(7):1971-8. PubMed ID: 23392077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration.
    Kim M; Kim T
    Analyst; 2013 Oct; 138(20):6007-15. PubMed ID: 23951567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging the Root Hair Morphology of Arabidopsis Seedlings in a Two-layer Microfluidic Platform.
    Aufrecht JA; Ryan JM; Hasim S; Allison DP; Nebenführ A; Doktycz MJ; Retterer ST
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28829431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of nanoporous membranes for tuning microbial interactions and biochemical reactions.
    Shankles PG; Timm AC; Doktycz MJ; Retterer ST
    J Vac Sci Technol B Nanotechnol Microelectron; 2015 Nov; 33(6):06FM03. PubMed ID: 26543684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro/extended-nano sampling interface from a living single cell.
    Lin L; Mawatari K; Morikawa K; Pihosh Y; Yoshizaki A; Kitamori T
    Analyst; 2017 May; 142(10):1689-1696. PubMed ID: 28393168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping spatiotemporal molecular distributions using a microfluidic array.
    Lynn NS; Tobet S; Henry CS; Dandy DS
    Anal Chem; 2012 Feb; 84(3):1360-6. PubMed ID: 22126747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended-nano fluidic systems for analytical and chemical technologies.
    Mawatari K; Tsukahara T; Sugii Y; Kitamori T
    Nanoscale; 2010 Sep; 2(9):1588-95. PubMed ID: 20820689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microfluidic Probe Integrated Device for Spatiotemporal 3D Chemical Stimulation in Cells.
    Shinha K; Nihei W; Kimura H
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32708814
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.