BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31312276)

  • 1. The application of convolutional neural network to stem cell biology.
    Kusumoto D; Yuasa S
    Inflamm Regen; 2019; 39():14. PubMed ID: 31312276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem cell imaging through convolutional neural networks: current issues and future directions in artificial intelligence technology.
    Ramakrishna RR; Abd Hamid Z; Wan Zaki WMD; Huddin AB; Mathialagan R
    PeerJ; 2020; 8():e10346. PubMed ID: 33240655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of convolutional neural networks for recognition of tenogenic differentiation based on cellular morphology.
    Dursun G; Tandale SB; Gulakala R; Eschweiler J; Tohidnezhad M; Markert B; Stoffel M
    Comput Methods Programs Biomed; 2021 Sep; 208():106279. PubMed ID: 34343743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-computer interaction based health diagnostics using ResNet34 for tongue image classification.
    Zhuang Q; Gan S; Zhang L
    Comput Methods Programs Biomed; 2022 Nov; 226():107096. PubMed ID: 36191350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognizing the Differentiation Degree of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cells Using Machine Learning and Deep Learning-Based Approaches.
    Lien CY; Chen TT; Tsai ET; Hsiao YJ; Lee N; Gao CE; Yang YP; Chen SJ; Yarmishyn AA; Hwang DK; Chou SJ; Chu WC; Chiou SH; Chien Y
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Deep Learning-Based System to Identify Endothelial Cells Derived from Induced Pluripotent Stem Cells.
    Kusumoto D; Lachmann M; Kunihiro T; Yuasa S; Kishino Y; Kimura M; Katsuki T; Itoh S; Seki T; Fukuda K
    Stem Cell Reports; 2018 Jun; 10(6):1687-1695. PubMed ID: 29754958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
    Fu X
    Comput Intell Neurosci; 2021; 2021():2691346. PubMed ID: 34925485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells.
    Kavitha MS; Kurita T; Park SY; Chien SI; Bae JS; Ahn BC
    PLoS One; 2017; 12(12):e0189974. PubMed ID: 29281701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Neural Networks Highly Predict Very Early Onset of Pluripotent Stem Cell Differentiation.
    Waisman A; La Greca A; Möbbs AM; Scarafía MA; Santín Velazque NL; Neiman G; Moro LN; Luzzani C; Sevlever GE; Guberman AS; Miriuka SG
    Stem Cell Reports; 2019 Apr; 12(4):845-859. PubMed ID: 30880077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Music Score Recognition Method Based on Deep Learning.
    Lin Q
    Comput Intell Neurosci; 2022; 2022():3022767. PubMed ID: 35845890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced Pluripotent Stem Cell-Based Drug Screening by Use of Artificial Intelligence.
    Kusumoto D; Yuasa S; Fukuda K
    Pharmaceuticals (Basel); 2022 Apr; 15(5):. PubMed ID: 35631387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images.
    Niioka H; Asatani S; Yoshimura A; Ohigashi H; Tagawa S; Miyake J
    Hum Cell; 2018 Jan; 31(1):87-93. PubMed ID: 29235053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Classification of Systemic Sclerosis Skin Using the MobileNetV2 Model.
    Akay M; Du Y; Sershen CL; Wu M; Chen TY; Assassi S; Mohan C; Akay YM
    IEEE Open J Eng Med Biol; 2021; 2():104-110. PubMed ID: 35402975
    [No Abstract]   [Full Text] [Related]  

  • 16. A Review on Multiscale-Deep-Learning Applications.
    Elizar E; Zulkifley MA; Muharar R; Zaman MHM; Mustaza SM
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and Classification of Histopathological Breast Images Using a Fusion of CNN Frameworks.
    Rafiq A; Chursin A; Awad Alrefaei W; Rashed Alsenani T; Aldehim G; Abdel Samee N; Menzli LJ
    Diagnostics (Basel); 2023 May; 13(10):. PubMed ID: 37238186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning models for cancer stem cell detection: a brief review.
    Chen J; Xu L; Li X; Park S
    Front Immunol; 2023; 14():1214425. PubMed ID: 37441078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of deep learning in medical imaging.
    Suzuki K
    Radiol Phys Technol; 2017 Sep; 10(3):257-273. PubMed ID: 28689314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.