These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3131228)

  • 1. Quantitative importance of the 25-hydroxylation pathway for bile acid biosynthesis in the rat.
    Duane WC; Björkhem I; Hamilton JN; Mueller SM
    Hepatology; 1988; 8(3):613-8. PubMed ID: 3131228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bile acid synthesis in man. In vivo activity of the 25-hydroxylation pathway.
    Duane WC; Pooler PA; Hamilton JN
    J Clin Invest; 1988 Jul; 82(1):82-5. PubMed ID: 3134400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of bile acid synthesis in man. Presence of a diurnal rhythm.
    Duane WC; Levitt DG; Mueller SM; Behrens JC
    J Clin Invest; 1983 Dec; 72(6):1930-6. PubMed ID: 6417166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of bile acid synthesis by 14CO2: the metabolism of propionyl CoA.
    Davis RA; Showalter P; Kern F
    Steroids; 1975 Oct; 26(4):408-21. PubMed ID: 1202660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the stereospecificity of microsomal "26"-hydroxylation in bile acid biosynthesis.
    Gustafsson J; Sjöstedt S
    J Biol Chem; 1978 Jan; 253(1):199-201. PubMed ID: 618857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of bile acid synthesis in man by release of 14CO2 from [26-14C]cholesterol: comparison to isotope dilution and assessment of optimum cholesterol specific activity.
    Mitchell JC; Stone BG; Duane WC
    Lipids; 1992 Jan; 27(1):68-71. PubMed ID: 1608308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of bile acid administration on bile acid synthesis and its circadian rhythm in man.
    Pooler PA; Duane WC
    Hepatology; 1988; 8(5):1140-6. PubMed ID: 3138171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of novel C21-bile acids from cholesterol in the rat. Structure identification of the major Di- and trihydroxylated species.
    Lund E; Boberg KM; Byström S; Olund J; Carlström K; Björkhem I
    J Biol Chem; 1991 Mar; 266(8):4929-37. PubMed ID: 2002039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol oxidation in primates by simultaneous sterol balance and breath analysis.
    Redinger RN; Chow L; Grace DM
    Am J Physiol; 1978 Jul; 235(1):R55-63. PubMed ID: 677340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the interference of ascorbic acid deficiency with bile acid biogenesis.
    Ginter E; Ozdín L; Nemec R
    Physiol Bohemoslov; 1977 Aug; 26(4):353-9. PubMed ID: 144286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of bile acid synthesis. I. Effects of conjugated ursodeoxycholate and cholate on bile acid synthesis in chronic bile fistula rat.
    Heuman DM; Hernandez CR; Hylemon PB; Kubaska WM; Hartman C; Vlahcevic ZR
    Hepatology; 1988; 8(2):358-65. PubMed ID: 3356417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 27-hydroxycholesterol: production rates in normal human subjects.
    Duane WC; Javitt NB
    J Lipid Res; 1999 Jul; 40(7):1194-9. PubMed ID: 10393204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of single ingestion of several bile acids or cholestyramine on 14CO2 output in [26 14C] cholesterol-fed rats.
    Mathé D; Chevallier F
    Biochimie; 1976; 58(10):1293-5. PubMed ID: 1009184
    [No Abstract]   [Full Text] [Related]  

  • 14. Biosynthesis of bile acids in cerebrotendinous xanthomatosis. Relationship of bile acid pool sizes and synthesis rates to hydroxylations at C-12, C-25, and C-26.
    Salen G; Shefer S; Tint GS; Nicolau G; Dayal B; Batta AK
    J Clin Invest; 1985 Aug; 76(2):744-51. PubMed ID: 4031069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative evaluation of the conversion of 25-hydroxycholesterol to bile acids in man.
    Swell L; Schwartz CC; Gustafsson J; Danielsson H; Vlahcevic ZR
    Biochim Biophys Acta; 1981 Jan; 663(1):163-8. PubMed ID: 7011410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylation, conjugation and sulfation of bile acids in primary monolayer cultures of rat hepatocytes.
    Princen HM; Meijer P
    Biochem Biophys Res Commun; 1988 Aug; 154(3):1114-21. PubMed ID: 3408488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Difference between cholic acid and chenodeoxycholic acid in dependence upon cholesterol of hepatic and plasmatic sources as the precursor in rats.
    Ayaki Y; Ogura Y; Kitayama S; Endo S; Ogura M
    Steroids; 1983 Apr; 41(4):509-20. PubMed ID: 6658889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeled oxidation products from [1-14C], [U-14C] and [16-14C]-palmitate in hepatocytes and mitochondria.
    Chatzidakis C; Otto DA
    Lipids; 1987 Sep; 22(9):620-6. PubMed ID: 3312905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of cholestanol from bile acid intermediates in the rabbit and the rat.
    Skrede S; Björkhem I; Buchmann MS; Midtvedt T
    J Biol Chem; 1985 Jan; 260(1):77-81. PubMed ID: 3917436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol oxidation and 7 alpha-hydroxylation during postnatal development of the rat.
    Hahn P; Innis SM
    Biol Neonate; 1984; 46(1):48-52. PubMed ID: 6743713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.