These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31312808)

  • 21. Compressive Sensing of Cuff-less Biosensor for Energy-Efficient Blood Pressure Monitoring.
    Rachim VP; Chung WY
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7072-7075. PubMed ID: 31947466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device.
    Sel K; Osman D; Huerta N; Edgar A; Pettigrew RI; Jafari R
    NPJ Digit Med; 2023 Mar; 6(1):59. PubMed ID: 36997608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Bio-Impedance Sensor Placement Relative to the Arterial Sites for Capturing Hemodynamic Parameters.
    Ibrahim B; Mrugala D; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6569-6573. PubMed ID: 31947347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Cuff Inflation on Blood Pressure, Arousals, Sleep Efficiency, and Desaturations: Sub-Analysis of the VAST Pilot Study.
    Socrates T; Krisai P; Meienberg A; Mayr M; Burkard T; Vischer AS
    Diagnostics (Basel); 2023 Sep; 13(18):. PubMed ID: 37761241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wearable Cuff-Less Blood Pressure Estimation at Home via Pulse Transit Time.
    Ganti VG; Carek AM; Nevius BN; Heller JA; Etemadi M; Inan OT
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1926-1937. PubMed ID: 32881697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. InstaBP: Cuff-less Blood Pressure Monitoring on Smartphone using Single PPG Sensor.
    Dey J; Gaurav A; Tiwari VN
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5002-5005. PubMed ID: 30441464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calibration-Free Cuffless Blood Pressure Estimation Based on a Population With a Diverse Range of Age and Blood Pressure.
    Yamanaka S; Morikawa K; Morita H; Huh JY; Yamamura O
    Front Med Technol; 2021; 3():695356. PubMed ID: 35047937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 31. Design and validation of dual-point time-differentiated photoplethysmogram (2PPG) wearable for cuffless blood pressure estimation.
    Wong KFM; Huang W; Ee DYH; Ng EYK
    Comput Methods Programs Biomed; 2024 Aug; 253():108251. PubMed ID: 38824806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contact pressure-guided wearable dual-channel bioimpedance device for continuous hemodynamic monitoring.
    Namkoong M; McMurray J; Branan K; Hernandez J; Gandhi M; Ida-Oze S; Cote G; Tian L
    Adv Mater Technol; 2024 Feb; 9(3):. PubMed ID: 38665229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cuffless Blood Pressure Estimation Using Calibrated Cardiovascular Dynamics in the Photoplethysmogram.
    Samimi H; Dajani HR
    Bioengineering (Basel); 2022 Sep; 9(9):. PubMed ID: 36134991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new approach for blood pressure estimation based on phonocardiogram.
    Omari T; Bereksi-Reguig F
    Biomed Eng Lett; 2019 Aug; 9(3):395-406. PubMed ID: 31456899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals.
    Liu ZD; Liu JK; Wen B; He QY; Li Y; Miao F
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CiGNN: A Causality-Informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation.
    Liu L; Lu H; Whelan M; Chen Y; Ding X
    IEEE J Biomed Health Inform; 2024 May; 28(5):2674-2686. PubMed ID: 38478458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous Tracking of Changes in Systolic Blood Pressure using BCG and ECG.
    He S; Dajani HR; Meade RD; Kenny GP; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6826-6829. PubMed ID: 31947408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H; Baig M; Rastegar S; Lindén M
    Stud Health Technol Inform; 2018; 249():77-83. PubMed ID: 29866960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.