These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 31312895)
1. Possible cerebrospinal fluid pathways in the middle fossa floor and pterional diploe: a magnetic resonance imaging study. Tsutsumi S; Ono H; Yasumoto Y; Ishii H Surg Radiol Anat; 2019 Sep; 41(9):1045-1051. PubMed ID: 31312895 [TBL] [Abstract][Full Text] [Related]
2. An undescribed venous pathway intervening between the olfactory fossa and nasal vestibule. Tsutsumi S; Ono H; Ishii H; Yasumoto Y Surg Radiol Anat; 2019 May; 41(5):485-490. PubMed ID: 30783738 [TBL] [Abstract][Full Text] [Related]
3. Visualization of cerebrospinal fluid-filled spaces in the cavernous sinus using magnetic resonance imaging. Tsutsumi S; Ono H; Yasumoto Y J Clin Neurosci; 2017 Nov; 45():332-336. PubMed ID: 28784555 [TBL] [Abstract][Full Text] [Related]
4. Fluid-Filled Dehiscences in the Anterior Cranial Fossa Floor: A Magnetic Resonance Imaging Study. Tsutsumi S; Ono H; Ishii H J Comput Assist Tomogr; 2022 Sep-Oct 01; 46(5):781-785. PubMed ID: 35483106 [TBL] [Abstract][Full Text] [Related]
5. Meckel Cave: An Anatomical Study Using Magnetic Resonance Imaging. Tsutsumi S; Ono H; Ishii H J Comput Assist Tomogr; 2021 Sep-Oct 01; 45(5):743-748. PubMed ID: 34270483 [TBL] [Abstract][Full Text] [Related]
6. Fast imaging employing steady-state acquisition (FIESTA) MRI to investigate cerebrospinal fluid (CSF) within dural reflections of posterior fossa cranial nerves. Noble DJ; Scoffings D; Ajithkumar T; Williams MV; Jefferies SJ Br J Radiol; 2016 Nov; 89(1067):20160392. PubMed ID: 27636022 [TBL] [Abstract][Full Text] [Related]
7. Enlargement of Meckel's cave in patients with spontaneous cerebrospinal fluid leaks. Aaron GP; Illing E; Lambertsen Z; Ritter M; Middlebrooks EH; Cure J; Cho DY; Riley KO; Woodworth BA Int Forum Allergy Rhinol; 2017 Apr; 7(4):421-424. PubMed ID: 27918153 [TBL] [Abstract][Full Text] [Related]
8. Diploe thickness and cranial dimensions in males and females in mid-Anatolian population: an MRI study. Sabancıoğulları V; Koşar Mİ; Salk I; Erdil FH; Oztoprak I; Cimen M Forensic Sci Int; 2012 Jun; 219(1-3):289.e1-7. PubMed ID: 22197522 [TBL] [Abstract][Full Text] [Related]
9. Phase-contrast cerebrospinal fluid flow magnetic resonance imaging in qualitative evaluation of patency of CSF flow pathways prior to infusion of chemotherapeutic and other agents into the fourth ventricle. Patel RP; Sitton CW; Ketonen LM; Hou P; Johnson JM; Romo S; Fletcher S; Shah MN; Kerr M; Zaky W; Rytting ME; Khatua S; Sandberg DI Childs Nerv Syst; 2018 Mar; 34(3):481-486. PubMed ID: 29170836 [TBL] [Abstract][Full Text] [Related]
10. Does a "Fundal Fluid Cap" Predict Successful Hearing Preservation in Vestibular Schwannoma Resections Via the Middle Cranial Fossa Approach? Sun DQ; Kung RW; Hansen MR; Gantz BJ Otol Neurotol; 2018 Jul; 39(6):772-777. PubMed ID: 29889789 [TBL] [Abstract][Full Text] [Related]
11. A new MRI tag-based method to non-invasively visualize cerebrospinal fluid flow. Borzage M; Ponrartana S; Tamrazi B; Gibbs W; Nelson MD; McComb JG; Blüml S Childs Nerv Syst; 2018 Sep; 34(9):1677-1682. PubMed ID: 29876643 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of anterior and middle cranial fossa intraosseous arachnoid granulations with 3D T2-SPACE sequence. Gozgec E; Ogul H; Durmus H Acta Neurol Belg; 2023 Oct; 123(5):1861-1868. PubMed ID: 36183280 [TBL] [Abstract][Full Text] [Related]
13. Hyperintense areas in the intraorbital optic nerve evaluated by T2-weighted magnetic resonance imaging: a glymphatic pathway? Tsutsumi S; Ono H; Ishii H Surg Radiol Anat; 2021 Aug; 43(8):1273-1278. PubMed ID: 33399917 [TBL] [Abstract][Full Text] [Related]
14. Signal Intensity of the Cerebrospinal Fluid after Intravenous Administration of Gadolinium-based Contrast Agents: Strong Contrast Enhancement around the Vein of Labbe. Ohashi T; Naganawa S; Ogawa E; Katagiri T; Kuno K Magn Reson Med Sci; 2019 Jul; 18(3):194-199. PubMed ID: 30416181 [TBL] [Abstract][Full Text] [Related]
15. Sternberg's canal: fact or fiction? Barañano CF; Curé J; Palmer JN; Woodworth BA Am J Rhinol Allergy; 2009; 23(2):167-71. PubMed ID: 19401043 [TBL] [Abstract][Full Text] [Related]
16. Quantitative cine-mode magnetic resonance imaging of Chiari I malformations: an analysis of cerebrospinal fluid dynamics. Armonda RA; Citrin CM; Foley KT; Ellenbogen RG Neurosurgery; 1994 Aug; 35(2):214-23; discussion 223-4. PubMed ID: 7969828 [TBL] [Abstract][Full Text] [Related]
17. A rare spontaneous temporal meningoencephalocele with dehiscence into the pterygoid fossa. Nishikawa T; Ishida H; Nibu K Auris Nasus Larynx; 2004 Dec; 31(4):429-31. PubMed ID: 15571919 [TBL] [Abstract][Full Text] [Related]
18. Orbital Interstitial Fluid: Evidence of a Potential Pathway for Extracranial Cerebrospinal Fluid Absorption. Sachs JR; Zapadka ME; Elster AD J Comput Assist Tomogr; 2018; 42(4):497-501. PubMed ID: 29489593 [TBL] [Abstract][Full Text] [Related]
19. Magnetic Resonance Imaging Technique for Visualization of Irregular Cerebrospinal Fluid Motion in the Ventricular System and Subarachnoid Space. Horie T; Kajihara N; Matsumae M; Obara M; Hayashi N; Hirayama A; Takizawa K; Takahara T; Yatsushiro S; Kuroda K World Neurosurg; 2017 Jan; 97():523-531. PubMed ID: 27474454 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous cerebrospinal fluid rhinorrhea: a clinical and anatomical study. Tóth M; Selivanova O; Schaefer S; Mann W Laryngoscope; 2010 Sep; 120(9):1724-9. PubMed ID: 20717949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]