These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31313482)

  • 1. Estimating Flight Style of Early Eocene Stem Palaeognath Bird Calciavis grandei (Lithornithidae).
    Torres CR; Norell MA; Clarke JA
    Anat Rec (Hoboken); 2020 Apr; 303(4):1035-1042. PubMed ID: 31313482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D atlas of tinamou (Neornithes: Tinamidae) pectoral morphology: Implications for reconstructing the ancestral neornithine flight apparatus.
    Widrig KE; Bhullar BS; Field DJ
    J Anat; 2023 Nov; 243(5):729-757. PubMed ID: 37358291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paleoneurology of stem palaeognaths clarifies the plesiomorphic condition of the crown bird central nervous system.
    Widrig KE; Navalón G; Field DJ
    J Morphol; 2024 Jun; 285(6):e21710. PubMed ID: 38760949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fossil evidence of wing shape in a stem relative of swifts and hummingbirds (Aves, Pan-Apodiformes).
    Ksepka DT; Clarke JA; Nesbitt SJ; Kulp FB; Grande L
    Proc Biol Sci; 2013 Jun; 280(1761):20130580. PubMed ID: 23760643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
    Hieronymus TL
    BMC Evol Biol; 2015 Feb; 15():30. PubMed ID: 25880306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui.
    Clarke JA; Zhou Z; Zhang F
    J Anat; 2006 Mar; 208(3):287-308. PubMed ID: 16533313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phylogenetic significance of the morphology of the syrinx, hyoid and larynx, of the southern cassowary, Casuarius casuarius (Aves, Palaeognathae).
    McInerney PL; Lee MSY; Clement AM; Worthy TH
    BMC Evol Biol; 2019 Dec; 19(1):233. PubMed ID: 31881941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing osteology, myology, and function of Rhea americana (Aves, Rheidae).
    Lo Coco GE; Motta MJ; Agnolín FL; Novas FE
    J Morphol; 2022 Aug; 283(8):1015-1047. PubMed ID: 35673834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural and crystallographic evolution of palaeognath (Aves) eggshells.
    Choi S; Hauber ME; Legendre LJ; Kim NH; Lee YN; Varricchio DJ
    Elife; 2023 Jan; 12():. PubMed ID: 36719067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential for Powered Flight Neared by Most Close Avialan Relatives, but Few Crossed Its Thresholds.
    Pei R; Pittman M; Goloboff PA; Dececchi TA; Habib MB; Kaye TG; Larsson HCE; Norell MA; Brusatte SL; Xu X
    Curr Biol; 2020 Oct; 30(20):4033-4046.e8. PubMed ID: 32763170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenomics and Morphology of Extinct Paleognaths Reveal the Origin and Evolution of the Ratites.
    Yonezawa T; Segawa T; Mori H; Campos PF; Hongoh Y; Endo H; Akiyoshi A; Kohno N; Nishida S; Wu J; Jin H; Adachi J; Kishino H; Kurokawa K; Nogi Y; Tanabe H; Mukoyama H; Yoshida K; Rasoamiaramanana A; Yamagishi S; Hayashi Y; Yoshida A; Koike H; Akishinonomiya F; Willerslev E; Hasegawa M
    Curr Biol; 2017 Jan; 27(1):68-77. PubMed ID: 27989673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation.
    Simmons NB; Seymour KL; Habersetzer J; Gunnell GF
    Nature; 2008 Feb; 451(7180):818-21. PubMed ID: 18270539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A redescription of Lithornis vulturinus (Aves, Palaeognathae) from the Early Eocene Fur Formation of Denmark.
    Bourdon E; Lindow B
    Zootaxa; 2015 Oct; 4032(5):493-514. PubMed ID: 26624382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of avian wing shape and previously unrecognized trends in covert feathering.
    Wang X; Clarke JA
    Proc Biol Sci; 2015 Oct; 282(1816):20151935. PubMed ID: 26446812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving.
    Smith NA; Clarke JA
    PLoS One; 2012; 7(11):e49584. PubMed ID: 23209585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pterosaurs evolved a muscular wing-body junction providing multifaceted flight performance benefits: Advanced aerodynamic smoothing, sophisticated wing root control, and wing force generation.
    Pittman M; Barlow LA; Kaye TG; Habib MB
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34663691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight.
    Navalón G; Marugán-Lobón J; Chiappe LM; Luis Sanz J; Buscalioni ÁD
    Sci Rep; 2015 Oct; 5():14864. PubMed ID: 26440221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palaeoatmosphere facilitates a gliding transition to powered flight in the Eocene bat, Onychonycteris finneyi.
    Giannini NP; Cannell A; Amador LI; Simmons NB
    Commun Biol; 2024 Mar; 7(1):365. PubMed ID: 38532113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wing bone geometry reveals active flight in Archaeopteryx.
    Voeten DFAE; Cubo J; de Margerie E; Röper M; Beyrand V; Bureš S; Tafforeau P; Sanchez S
    Nat Commun; 2018 Mar; 9(1):923. PubMed ID: 29535376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.