These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31313517)
21. MALDI-Imaging for Classification of Epithelial Ovarian Cancer Histotypes from a Tissue Microarray Using Machine Learning Methods. Klein O; Kanter F; Kulbe H; Jank P; Denkert C; Nebrich G; Schmitt WD; Wu Z; Kunze CA; Sehouli J; Darb-Esfahani S; Braicu I; Lellmann J; Thiele H; Taube ET Proteomics Clin Appl; 2019 Jan; 13(1):e1700181. PubMed ID: 30471200 [TBL] [Abstract][Full Text] [Related]
22. Measurements of light scattering in an integrated microfluidic waveguide cytometer. Su XT; Singh K; Capjack C; Petrácek J; Backhouse C; Rozmus W J Biomed Opt; 2008; 13(2):024024. PubMed ID: 18465987 [TBL] [Abstract][Full Text] [Related]
23. Siamese deep learning video flow cytometry for automatic and label-free clinical cervical cancer cell analysis. Liu C; Yuan Z; Liu Q; Song K; Kong B; Su X Biomed Opt Express; 2024 Apr; 15(4):2063-2077. PubMed ID: 38633087 [TBL] [Abstract][Full Text] [Related]
24. Artificial Intelligence in Ovarian Cancer Diagnosis. Akazawa M; Hashimoto K Anticancer Res; 2020 Aug; 40(8):4795-4800. PubMed ID: 32727807 [TBL] [Abstract][Full Text] [Related]
25. An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698 [TBL] [Abstract][Full Text] [Related]
26. Particles small angle forward-scattered light measurement based on photovoltaic cell microflow cytometer. Chen HT; Fu LM; Huang HH; Shu WE; Wang YN Electrophoresis; 2014 Feb; 35(2-3):337-44. PubMed ID: 24002889 [TBL] [Abstract][Full Text] [Related]
28. Light scattering and morphology of the lymphocyte as applied to flow cytometry for distinguishing healthy and infected individuals. Ruban GI; Berdnik VV; Marinitch DV; Goncharova NV; Loiko VA J Biomed Opt; 2010; 15(5):057008. PubMed ID: 21054124 [TBL] [Abstract][Full Text] [Related]
29. Label-free liquid biopsy through the identification of tumor cells by machine learning-powered tomographic phase imaging flow cytometry. Pirone D; Montella A; Sirico DG; Mugnano M; Villone MM; Bianco V; Miccio L; Porcelli AM; Kurelac I; Capasso M; Iolascon A; Maffettone PL; Memmolo P; Ferraro P Sci Rep; 2023 Apr; 13(1):6042. PubMed ID: 37055398 [TBL] [Abstract][Full Text] [Related]
30. Multiparameter mechanical and morphometric screening of cells. Masaeli M; Gupta D; O'Byrne S; Tse HT; Gossett DR; Tseng P; Utada AS; Jung HJ; Young S; Clark AT; Di Carlo D Sci Rep; 2016 Dec; 6():37863. PubMed ID: 27910869 [TBL] [Abstract][Full Text] [Related]
31. Intraoperative Diagnosis Support Tool for Serous Ovarian Tumors Based on Microarray Data Using Multicategory Machine Learning. Park JS; Choi SB; Kim HJ; Cho NH; Kim SW; Kim YT; Nam EJ; Chung JW; Kim DW Int J Gynecol Cancer; 2016 Jan; 26(1):104-13. PubMed ID: 26512784 [TBL] [Abstract][Full Text] [Related]
32. Machine Learning Based Real-Time Image-Guided Cell Sorting and Classification. Gu Y; Zhang AC; Han Y; Li J; Chen C; Lo YH Cytometry A; 2019 May; 95(5):499-509. PubMed ID: 30958640 [TBL] [Abstract][Full Text] [Related]
33. Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Wang Z; El-Ali J; Engelund M; Gotsaed T; Perch-Nielsen IR; Mogensen KB; Snakenborg D; Kutter JP; Wolff A Lab Chip; 2004 Aug; 4(4):372-7. PubMed ID: 15269807 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images. Martínez-Más J; Bueno-Crespo A; Khazendar S; Remezal-Solano M; Martínez-Cendán JP; Jassim S; Du H; Al Assam H; Bourne T; Timmerman D PLoS One; 2019; 14(7):e0219388. PubMed ID: 31348783 [TBL] [Abstract][Full Text] [Related]
35. Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry. Li Y; Mahjoubfar A; Chen CL; Niazi KR; Pei L; Jalali B Sci Rep; 2019 Jul; 9(1):11088. PubMed ID: 31366998 [TBL] [Abstract][Full Text] [Related]
36. Comparison study of distinguishing cancerous and normal prostate epithelial cells by confocal and polarization diffraction imaging. Jiang W; Lu JQ; Yang LV; Sa Y; Feng Y; Ding J; Hu XH J Biomed Opt; 2016 Jul; 21(7):71102. PubMed ID: 26616011 [TBL] [Abstract][Full Text] [Related]
37. Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells. Go T; Kim JH; Byeon H; Lee SJ J Biophotonics; 2018 Sep; 11(9):e201800101. PubMed ID: 29676064 [TBL] [Abstract][Full Text] [Related]
38. Integration of light scattering with machine learning for label free cell detection. Yu Wan W; Liu L; Liu X; Wang W; Zahurul Islam M; Dong C; Garen CR; Woodside MT; Gupta M; Mandal M; Rozmus W; Yin Tsui Y Biomed Opt Express; 2021 Jun; 12(6):3512-3529. PubMed ID: 34221676 [TBL] [Abstract][Full Text] [Related]
39. A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics. Otesteanu CF; Ugrinic M; Holzner G; Chang YT; Fassnacht C; Guenova E; Stavrakis S; deMello A; Claassen M Cell Rep Methods; 2021 Oct; 1(6):100094. PubMed ID: 35474892 [TBL] [Abstract][Full Text] [Related]
40. Application of Machine Learning for Cytometry Data. Hu Z; Bhattacharya S; Butte AJ Front Immunol; 2021; 12():787574. PubMed ID: 35046945 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]