These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31313890)

  • 1. One-Pot Synthesis of Unsaturated Polyester Bioelastomer with Controllable Material Curing for Microscale Designs.
    Davenport Huyer L; Bannerman AD; Wang Y; Savoji H; Knee-Walden EJ; Brissenden A; Yee B; Shoaib M; Bobicki E; Amsden BG; Radisic M
    Adv Healthc Mater; 2019 Aug; 8(16):e1900245. PubMed ID: 31313890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip.
    Okhovatian S; Shakeri A; Davenport Huyer L; Radisic M
    Biomacromolecules; 2023 Nov; 24(11):4511-4531. PubMed ID: 37639715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastomeric biocomposite of silver-containing mesoporous bioactive glass and poly(1,8-octanediol citrate): Physiochemistry and in vitro antibacterial capacity in tissue engineering applications.
    Pourshahrestani S; Zeimaran E; Kadri NA; Gargiulo N; Jindal HM; Hasikin K; Naveen SV; Sekaran SD; Kamarul T
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1022-1033. PubMed ID: 30812986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes.
    Xu B; Li Y; Fang X; Thouas GA; Cook WD; Newgreen DF; Chen Q
    J Mech Behav Biomed Mater; 2013 Dec; 28():354-65. PubMed ID: 24125905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyoctanediol citrate/sebacate bioelastomer films: surface morphology, chemistry and functionality.
    Djordjevic I; Choudhury NR; Dutta NK; Kumar S; Szili EJ; Steele DA
    J Biomater Sci Polym Ed; 2010; 21(2):237-51. PubMed ID: 20092687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves.
    Xue Y; Sant V; Phillippi J; Sant S
    Acta Biomater; 2017 Jan; 48():2-19. PubMed ID: 27780764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable polyester elastomers in tissue engineering.
    Webb AR; Yang J; Ameer GA
    Expert Opin Biol Ther; 2004 Jun; 4(6):801-12. PubMed ID: 15174963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics.
    Zhao Y; Zhong W
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.
    Zhu L; Zhang Y; Ji Y
    J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Citrate-Based Polyester Elastomer with Artificially Regulatable Degradation Rate on Demand.
    Wan L; Lu L; Liang X; Liu Z; Huang X; Du R; Luo Q; Xu Q; Zhang Q; Jia X
    Biomacromolecules; 2023 Sep; 24(9):4123-4137. PubMed ID: 37584644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.
    Wu Y; Wang L; Zhao X; Hou S; Guo B; Ma PX
    Biomaterials; 2016 Oct; 104():18-31. PubMed ID: 27424213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
    Chen J; Dong R; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation properties of a biodegradable shape memory elastomer, poly(glycerol dodecanoate), for soft tissue repair.
    Ramaraju H; Solorio LD; Bocks ML; Hollister SJ
    PLoS One; 2020; 15(2):e0229112. PubMed ID: 32084184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering.
    Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK
    Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Citric Acid-Based Porous Scaffolds for Bone Regeneration.
    Masehi-Lano JJ; Chung EJ
    Methods Mol Biol; 2018; 1758():1-10. PubMed ID: 29679318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel elastomeric fibrous networks produced from poly(xylitol sebacate)2:5 by core/shell electrospinning: fabrication and mechanical properties.
    Li Y; Thouas GA; Chen Q
    J Mech Behav Biomed Mater; 2014 Dec; 40():210-221. PubMed ID: 25243671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.