BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31313955)

  • 1. Solute and water transport along an inner medullary collecting duct undergoing peristaltic contractions.
    Layton AT
    Am J Physiol Renal Physiol; 2019 Sep; 317(3):F735-F742. PubMed ID: 31313955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of inner medullary collecting duct NaCl transport in urinary concentration.
    Chandhoke PS; Saidel GM; Knepper MA
    Am J Physiol; 1985 Nov; 249(5 Pt 2):F688-97. PubMed ID: 4061655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the profile of water, NaCl, and urea transport in the countercurrent multiplication system between thin ascending limb and inner medullary collecting duct.
    Hamada Y; Imai M; Aoki T; Suzuki R; Kamiya A
    Tohoku J Exp Med; 1992 Sep; 168(1):47-62. PubMed ID: 1488758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney.
    Marcano M; Layton AT; Layton HE
    Bull Math Biol; 2010 Feb; 72(2):314-39. PubMed ID: 19915926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of collecting duct active NaCl reabsorption and inner medulla anatomy on renal concentrating mechanism.
    Wang X; Wexler AS
    Am J Physiol; 1996 May; 270(5 Pt 2):F900-11. PubMed ID: 8928853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle.
    Dantzler WH; Layton AT; Layton HE; Pannabecker TL
    Clin J Am Soc Nephrol; 2014 Oct; 9(10):1781-9. PubMed ID: 23908457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water extraction from the inner medullary collecting tubule system: a role for urea.
    Sanjana VM; Robertson CR; Jamison RL
    Kidney Int; 1976 Aug; 10(2):139-46. PubMed ID: 966451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The renal concentrating mechanism: micropuncture studies of the renal medulla.
    Jamison RL
    Fed Proc; 1983 May; 42(8):2392-7. PubMed ID: 6341087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial water and solute recovery by inner medullary vasa recta.
    Edwards A; Delong MJ; Pallone TL
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F257-69. PubMed ID: 10662730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F356-71. PubMed ID: 21068086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal countercurrent system: role of collecting duct convergence and pelvic urea predicted from a mathematical model.
    Lory P; Gilg A; Horster M
    J Math Biol; 1983; 16(3):281-304. PubMed ID: 6833899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of peristaltic contractions of the renal pelvic wall on solute concentrations of the renal inner medulla in the hamster.
    Pruitt ME; Knepper MA; Graves B; Schmidt-Nielsen B
    Am J Physiol Renal Physiol; 2006 Apr; 290(4):F892-6. PubMed ID: 16234309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium chloride, water and urea handling in the rat renal medulla: a computer simulation.
    Barrett GL; Packer JS; Davis JM
    Ren Physiol; 1986; 9(4):223-40. PubMed ID: 3749593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urea handling by the medullary collecting duct of the rat kidney during hydropenia and urea infusion.
    Sonnenberg H; Wilson DR
    Pflugers Arch; 1981 May; 390(2):131-7. PubMed ID: 7195561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments.
    Sands JM; Nonoguchi H; Knepper MA
    Am J Physiol; 1987 Nov; 253(5 Pt 2):F823-32. PubMed ID: 3688238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1047-56. PubMed ID: 21753076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the collecting duct in urinary concentration.
    Kokko JP
    Kidney Int; 1987 Feb; 31(2):606-10. PubMed ID: 3550230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F372-84. PubMed ID: 21068088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model of the rat kidney. II. Antidiuresis.
    Weinstein AM
    Am J Physiol Renal Physiol; 2020 Apr; 318(4):F936-F955. PubMed ID: 32088967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanum permeability of tight junctions along the collecting duct of the rat.
    Tisher CC; Yarger WE
    Kidney Int; 1975 Jan; 7(1):35-44. PubMed ID: 1127864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.