BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31314025)

  • 1. A coordinatively unsaturated iridium complex with an unsymmetrical redox-active ligand: (spectro)electrochemical and reactivity studies.
    Sobottka S; van der Meer MB; Glais E; Albold U; Suhr S; Su CY; Sarkar B
    Dalton Trans; 2019 Oct; 48(37):13931-13942. PubMed ID: 31314025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodium diamidobenzene complexes: a tale of different substituents on the diamidobenzene ligand.
    Suhr S; Walter R; Beerhues J; Albold U; Sarkar B
    Chem Sci; 2022 Sep; 13(35):10532-10545. PubMed ID: 36277629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentanuclear Scaffold: A Molecular Platform for Small-Molecule Conversions.
    Kondo M; Masaoka S
    Acc Chem Res; 2020 Oct; 53(10):2140-2151. PubMed ID: 32870647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-way cooperativity in d8 metal complexes with ligands displaying chemical and redox non-innocence.
    Deibel N; Hohloch S; Schweinfurth D; Weisser F; Grupp A; Sarkar B
    Chemistry; 2014 Nov; 20(46):15178-87. PubMed ID: 25251147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Reactivity of Low-Coordinate Titanium Synthons Supported by a Reduced Redox-Active Ligand.
    Clark KM
    Inorg Chem; 2016 Jul; 55(13):6443-8. PubMed ID: 27304996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Non-Innocent Behavior of a Terminal Iridium Hydrazido(2-) Triple Bond.
    Pearce AJ; Cassabaum AA; Gast GE; Frontiera RR; Tonks IA
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13169-13173. PubMed ID: 27654844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New avenues for ligand-mediated processes--expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands.
    Broere DL; Plessius R; van der Vlugt JI
    Chem Soc Rev; 2015 Oct; 44(19):6886-915. PubMed ID: 26148803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lessons from isolable nickel(I) precursor complexes for small molecule activation.
    Yao S; Driess M
    Acc Chem Res; 2012 Feb; 45(2):276-87. PubMed ID: 21875073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Asymmetry on the Redox Properties of Phenoxo- and Hydroxo-Bridged Dicopper Complexes: Spectroelectrochemical and Theoretical Studies.
    Gennarini F; David R; López I; Le Mest Y; Réglier M; Belle C; Thibon-Pourret A; Jamet H; Le Poul N
    Inorg Chem; 2017 Jul; 56(14):7707-7719. PubMed ID: 28665137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dicobalt Complex with an Unsymmetrical Quinonoid Bridge Isolated in Three Units of Charge: A Combined Structural, (Spectro)electrochemical, Magnetic and Spectroscopic Study.
    van der Meer M; Rechkemmer Y; Frank U; Breitgoff FD; Hohloch S; Su CY; Neugebauer P; Marx R; Dörfel M; van Slageren J; Sarkar B
    Chemistry; 2016 Sep; 22(39):13884-13893. PubMed ID: 27549247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.
    de Ruiter G; Thompson NB; Lionetti D; Agapie T
    J Am Chem Soc; 2015 Nov; 137(44):14094-106. PubMed ID: 26390375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination versatility of p-hydroquinone-functionalized dibenzobarrelene-based PC(sp
    De-Botton S; Romm R; Bensoussan G; Hitrik M; Musa S; Gelman D
    Dalton Trans; 2016 Oct; 45(40):16040-16046. PubMed ID: 27711708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of a bulky N-heterocyclic carbene ligand with Rh(I) and Ir(I). Double C-H activation and isolation of bare 14-electron Rh(III) and Ir(III) complexes.
    Scott NM; Dorta R; Stevens ED; Correa A; Cavallo L; Nolan SP
    J Am Chem Soc; 2005 Mar; 127(10):3516-26. PubMed ID: 15755173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.
    Lv Z; Zheng W; Chen Z; Tang Z; Mo W; Yin G
    Dalton Trans; 2016 Jul; 45(28):11369-83. PubMed ID: 27333442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Single-Electron Transfer via Metal-Ligand Cooperativity Drives Divergent Nickel-Electrocatalyzed Radical Pathways.
    Wuttig A; Derrick JS; Loipersberger M; Snider A; Head-Gordon M; Chang CJ; Toste FD
    J Am Chem Soc; 2021 May; 143(18):6990-7001. PubMed ID: 33915049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing redox-active ligands for low-barrier radical addition at oxorhenium complexes.
    Lippert CA; Hardcastle KI; Soper JD
    Inorg Chem; 2011 Oct; 50(20):9864-78. PubMed ID: 21744815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis.
    Becker J; Modl T; Gessner VH
    Chemistry; 2014 Sep; 20(36):11295-9. PubMed ID: 25047390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Ligand Cooperativity in a Methandiide-Derived Iridium Carbene Complex.
    Weismann J; Waterman R; Gessner VH
    Chemistry; 2016 Mar; 22(11):3846-55. PubMed ID: 26748420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
    Rice DB; Massie AA; Jackson TA
    Acc Chem Res; 2017 Nov; 50(11):2706-2717. PubMed ID: 29064667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.