These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 31314154)
1. The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Liu M; Li Y; Ma Y; Zhao Q; Stiller J; Feng Q; Tian Q; Liu D; Han B; Liu C Plant Biotechnol J; 2020 Feb; 18(2):443-456. PubMed ID: 31314154 [TBL] [Abstract][Full Text] [Related]
2. Chromosome-scale assembly of wild barley accession "OUH602". Sato K; Mascher M; Himmelbach A; Haberer G; Spannagl M; Stein N G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34568912 [TBL] [Abstract][Full Text] [Related]
3. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. Ma Y; Liu M; Stiller J; Liu C BMC Genomics; 2019 Jan; 20(1):12. PubMed ID: 30616511 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Dai F; Chen ZH; Wang X; Li Z; Jin G; Wu D; Cai S; Wang N; Wu F; Nevo E; Zhang G Proc Natl Acad Sci U S A; 2014 Sep; 111(37):13403-8. PubMed ID: 25197090 [TBL] [Abstract][Full Text] [Related]
5. Assembly and analysis of a qingke reference genome demonstrate its close genetic relation to modern cultivated barley. Dai F; Wang X; Zhang XQ; Chen Z; Nevo E; Jin G; Wu D; Li C; Zhang G Plant Biotechnol J; 2018 Mar; 16(3):760-770. PubMed ID: 28871634 [TBL] [Abstract][Full Text] [Related]
6. The development and application of molecular markers for abiotic stress tolerance in barley. Forster BP; Ellis RP; Thomas WT; Newton AC; Tuberosa R; This D; el-Enein RA; Bahri MH; Ben Salem M J Exp Bot; 2000 Jan; 51(342):19-27. PubMed ID: 10938792 [TBL] [Abstract][Full Text] [Related]
7. Genome-Wide Identification and Transcriptional Expression Profiles of Wu XT; Xiong ZP; Chen KX; Zhao GR; Feng KR; Li XH; Li XR; Tian Z; Huo FL; Wang MX; Song W Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627219 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. Cai S; Wu D; Jabeen Z; Huang Y; Huang Y; Zhang G PLoS One; 2013; 8(7):e69776. PubMed ID: 23922796 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial genome sequences from wild and cultivated barley (Hordeum vulgare). Hisano H; Tsujimura M; Yoshida H; Terachi T; Sato K BMC Genomics; 2016 Oct; 17(1):824. PubMed ID: 27776481 [TBL] [Abstract][Full Text] [Related]
10. Chromosome-scale assembly of barley cv. 'Haruna Nijo' as a resource for barley genetics. Sakkour A; Mascher M; Himmelbach A; Haberer G; Lux T; Spannagl M; Stein N; Kawamoto S; Sato K DNA Res; 2022 Jan; 29(1):. PubMed ID: 35022669 [TBL] [Abstract][Full Text] [Related]
11. Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Abdel-Ghani AH; Parzies HK; Omary A; Geiger HH Theor Appl Genet; 2004 Aug; 109(3):588-95. PubMed ID: 15083273 [TBL] [Abstract][Full Text] [Related]
12. [Allelic diversity of hordein-coding loci Hrd A and Hrd B in cultivated (Hordeum vulgare L.) and wild (H. spontaneum C. Koch) barley from Iran (as a part of the Fertile Crescent)]. Pomortsev AA; Lyalina EV Genetika; 2016 Oct; 52(10):1146-58. PubMed ID: 29369584 [TBL] [Abstract][Full Text] [Related]
13. Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum). Zhou H; Liu S; Liu Y; Liu Y; You J; Deng M; Ma J; Chen G; Wei Y; Liu C; Zheng Y BMC Genet; 2016 Sep; 17(1):130. PubMed ID: 27624070 [TBL] [Abstract][Full Text] [Related]
14. Resequencing data indicate a modest effect of domestication on diversity in barley: a cultigen with multiple origins. Morrell PL; Gonzales AM; Meyer KK; Clegg MT J Hered; 2014; 105(2):253-64. PubMed ID: 24336926 [TBL] [Abstract][Full Text] [Related]
15. Tibet is one of the centers of domestication of cultivated barley. Dai F; Nevo E; Wu D; Comadran J; Zhou M; Qiu L; Chen Z; Beiles A; Chen G; Zhang G Proc Natl Acad Sci U S A; 2012 Oct; 109(42):16969-73. PubMed ID: 23033493 [TBL] [Abstract][Full Text] [Related]
16. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Mascher M; Richmond TA; Gerhardt DJ; Himmelbach A; Clissold L; Sampath D; Ayling S; Steuernagel B; Pfeifer M; D'Ascenzo M; Akhunov ED; Hedley PE; Gonzales AM; Morrell PL; Kilian B; Blattner FR; Scholz U; Mayer KF; Flavell AJ; Muehlbauer GJ; Waugh R; Jeddeloh JA; Stein N Plant J; 2013 Nov; 76(3):494-505. PubMed ID: 23889683 [TBL] [Abstract][Full Text] [Related]
17. Genome resequencing and transcriptome profiling reveal molecular evidence of tolerance to water deficit in barley. Qiu CW; Ma Y; Liu W; Zhang S; Wang Y; Cai S; Zhang G; Chater CCC; Chen ZH; Wu F J Adv Res; 2023 Jul; 49():31-45. PubMed ID: 36170948 [TBL] [Abstract][Full Text] [Related]
18. On the origin and domestication history of Barley (Hordeum vulgare). Badr A; Müller K; Schäfer-Pregl R; El Rabey H; Effgen S; Ibrahim HH; Pozzi C; Rohde W; Salamini F Mol Biol Evol; 2000 Apr; 17(4):499-510. PubMed ID: 10742042 [TBL] [Abstract][Full Text] [Related]
19. Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Matus I; Corey A; Filichkin T; Hayes PM; Vales MI; Kling J; Riera-Lizarazu O; Sato K; Powell W; Waugh R Genome; 2003 Dec; 46(6):1010-23. PubMed ID: 14663520 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Characterization of WRKY Transcription Factors Revealed Gene Duplication and Diversification in Populations of Wild to Domesticated Barley. Kan J; Gao G; He Q; Gao Q; Jiang C; Ahmar S; Liu J; Zhang J; Yang P Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]