BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31314945)

  • 1. Comparative genomics groups phages of Negativicutes and classical Firmicutes despite different Gram-staining properties.
    Rands CM; Brüssow H; Zdobnov EM
    Environ Microbiol; 2019 Nov; 21(11):3989-4001. PubMed ID: 31314945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ACI-1 beta-lactamase is widespread across human gut microbiomes in Negativicutes due to transposons harboured by tailed prophages.
    Rands CM; Starikova EV; Brüssow H; Kriventseva EV; Govorun VM; Zdobnov EM
    Environ Microbiol; 2018 Jun; 20(6):2288-2300. PubMed ID: 30014616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics of phages and prophages in lactic acid bacteria.
    Desiere F; Lucchini S; Canchaya C; Ventura M; Brüssow H
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):73-91. PubMed ID: 12369206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex.
    Lynch KH; Stothard P; Dennis JJ
    BMC Genomics; 2010 Oct; 11():599. PubMed ID: 20973964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposable Mu-like phages in Firmicutes: new instances of divergence generating retroelements.
    Toussaint A
    Res Microbiol; 2013 May; 164(4):281-7. PubMed ID: 23380080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Prevalence and Genetic Diversity of Large phiCD211 (phiCDIF1296T)-Like Prophages in Clostridioides difficile.
    Garneau JR; Sekulovic O; Dupuy B; Soutourina O; Monot M; Fortier LC
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150513
    [No Abstract]   [Full Text] [Related]  

  • 7. Genomic Sequencing of High-Efficiency Transducing Streptococcal Bacteriophage A25: Consequences of Escape from Lysogeny.
    McCullor K; Postoak B; Rahman M; King C; McShan WM
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30224437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extension of the transposable bacterial virus family: two genomic organisations among phages and prophages with a Tn552-related transposase.
    Toussaint A; Van Gijsegem F
    Res Microbiol; 2018 Nov; 169(9):495-499. PubMed ID: 29158161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A diversity-generating retroelement encoded by a globally ubiquitous Bacteroides phage.
    Benler S; Cobián-Güemes AG; McNair K; Hung SH; Levi K; Edwards R; Rohwer F
    Microbiome; 2018 Oct; 6(1):191. PubMed ID: 30352623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structured annotation frame for the transposable phages: a new proposed family "Saltoviridae" within the Caudovirales.
    Hulo C; Masson P; Le Mercier P; Toussaint A
    Virology; 2015 Mar; 477():155-163. PubMed ID: 25500185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages.
    Casjens SR; Grose JH
    Virology; 2016 Sep; 496():255-276. PubMed ID: 27372181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prophage genomics.
    Canchaya C; Proux C; Fournous G; Bruttin A; Brüssow H
    Microbiol Mol Biol Rev; 2003 Jun; 67(2):238-76, table of contents. PubMed ID: 12794192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Moraxella catarrhalis prophages display hyperconserved non-structural genes despite their genomic diversity.
    Ariff A; Wise MJ; Kahler CM; Tay CY; Peters F; Perkins TT; Chang BJ
    BMC Genomics; 2015 Oct; 16():860. PubMed ID: 26497500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction and characterization of prophages of Stenotrophomonas maltophilia reveals a remarkable phylogenetic diversity of prophages.
    Fang Z; Xu M; Shen S; Sun W; Yu Q; Wu Q; Xiang L; Weng Q
    Sci Rep; 2023 Dec; 13(1):22941. PubMed ID: 38135742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-based taxonomic framework for the class Negativicutes: division of the class Negativicutes into the orders Selenomonadales emend., Acidaminococcales ord. nov. and Veillonellales ord. nov.
    Campbell C; Adeolu M; Gupta RS
    Int J Syst Evol Microbiol; 2015 Sep; 65(9):3203-3215. PubMed ID: 25999592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposable Prophages in Leptospira: An Ancient, Now Diverse, Group Predominant in Causative Agents of Weil's Disease.
    Olo Ndela E; Enault F; Toussaint A
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic analysis of twelve Streptococcus suis (pro)phages.
    Tang F; Bossers A; Harders F; Lu C; Smith H
    Genomics; 2013 Jun; 101(6):336-44. PubMed ID: 23587535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. May the Phage be With You? Prophage-Like Elements in the Genomes of Soft Rot
    Czajkowski R
    Front Microbiol; 2019; 10():138. PubMed ID: 30828320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of Wetting-Induced Bacteriophage Blooms in Biological Soil Crust.
    Van Goethem MW; Swenson TL; Trubl G; Roux S; Northen TR
    mBio; 2019 Dec; 10(6):. PubMed ID: 31848272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modular view of the bacteriophage genomic space: identification of host and lifestyle marker modules.
    Lima-Mendez G; Toussaint A; Leplae R
    Res Microbiol; 2011 Oct; 162(8):737-46. PubMed ID: 21767638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.