These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 31314946)
1. Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures. Pampaloni NP; Rago I; Calaresu I; Cozzarini L; Casalis L; Goldoni A; Ballerini L; Scaini D Dev Neurobiol; 2020 Sep; 80(9-10):316-331. PubMed ID: 31314946 [TBL] [Abstract][Full Text] [Related]
2. Connectional specification of regenerating entorhinal projection neuron classes cannot be overridden by altered target availability in postnatal organotypic slice co-culture. Li D; Field PM; Raisman G Exp Neurol; 1996 Nov; 142(1):151-60. PubMed ID: 8912906 [TBL] [Abstract][Full Text] [Related]
3. Regeneration of entorhino-dentate projections in organotypic slice cultures: mode of axonal regrowth and effects of growth factors. Woodhams PL; Atkinson DJ Exp Neurol; 1996 Jul; 140(1):68-78. PubMed ID: 8682181 [TBL] [Abstract][Full Text] [Related]
4. Denervated mouse dentate granule cells adjust their excitatory but not inhibitory synapses following in vitro entorhinal cortex lesion. Lenz M; Galanis C; Kleidonas D; Fellenz M; Deller T; Vlachos A Exp Neurol; 2019 Feb; 312():1-9. PubMed ID: 30401642 [TBL] [Abstract][Full Text] [Related]
5. Calcium homeostasis of acutely denervated and lesioned dentate gyrus in organotypic entorhino-hippocampal co-cultures. Müller CM; Vlachos A; Deller T Cell Calcium; 2010 Mar; 47(3):242-52. PubMed ID: 20053446 [TBL] [Abstract][Full Text] [Related]
6. Blockade of neuronal activity alters spine maturation of dentate granule cells but not their dendritic arborization. Drakew A; Frotscher M; Heimrich B Neuroscience; 1999; 94(3):767-74. PubMed ID: 10579567 [TBL] [Abstract][Full Text] [Related]
9. Organization of the entorhinal projection to the rat dentate gyrus revealed by Dil anterograde labeling. Tamamaki N Exp Brain Res; 1997 Sep; 116(2):250-8. PubMed ID: 9348124 [TBL] [Abstract][Full Text] [Related]
10. Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrus. Gloveli T; Dugladze T; Schmitz D; Heinemann U Eur J Neurosci; 2001 Jan; 13(2):413-20. PubMed ID: 11168548 [TBL] [Abstract][Full Text] [Related]
11. Seizures, cell death, and mossy fiber sprouting in kainic acid-treated organotypic hippocampal cultures. Routbort MJ; Bausch SB; McNamara JO Neuroscience; 1999; 94(3):755-65. PubMed ID: 10579566 [TBL] [Abstract][Full Text] [Related]
12. Axons regenerate with correct specificity in horizontal slice culture of the postnatal rat entorhino-hippocampal system. Li D; Field PM; Yoshioka N; Raisman G Eur J Neurosci; 1994 Jun; 6(6):1026-37. PubMed ID: 7524961 [TBL] [Abstract][Full Text] [Related]
13. Modulators of signal transduction pathways can promote axonal regeneration in entorhino-hippocampal slice cultures. Bonnici B; Kapfhammer JP Eur J Pharmacol; 2009 Jun; 612(1-3):35-40. PubMed ID: 19375417 [TBL] [Abstract][Full Text] [Related]
14. The immunosuppressant mycophenolate mofetil improves preservation of the perforant path in organotypic hippocampal slice cultures: a retrograde tracing study. Oest TM; Dehghani F; Korf HW; Hailer NP Hippocampus; 2006; 16(5):437-42. PubMed ID: 16598730 [TBL] [Abstract][Full Text] [Related]
16. Lateral entorhinal, perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: a current source density study. Canning KJ; Leung LS Hippocampus; 1997; 7(6):643-55. PubMed ID: 9443060 [TBL] [Abstract][Full Text] [Related]
17. The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. van Groen T; Miettinen P; Kadish I Hippocampus; 2003; 13(1):133-49. PubMed ID: 12625464 [TBL] [Abstract][Full Text] [Related]
18. Organotypic entorhino-hippocampal slice cultures--a tool to study the molecular and cellular regulation of axonal regeneration and collateral sprouting in vitro. Del Turco D; Deller T Methods Mol Biol; 2007; 399():55-66. PubMed ID: 18309925 [TBL] [Abstract][Full Text] [Related]
19. NMDA-receptor inhibition increases spine stability of denervated mouse dentate granule cells and accelerates spine density recovery following entorhinal denervation in vitro. Vlachos A; Helias M; Becker D; Diesmann M; Deller T Neurobiol Dis; 2013 Nov; 59():267-76. PubMed ID: 23932917 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks. Fabbro A; Bosi S; Ballerini L; Prato M ACS Chem Neurosci; 2012 Aug; 3(8):611-8. PubMed ID: 22896805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]