These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31315095)

  • 1. Dark-field spectroscopy: development, applications and perspectives in single nanoparticle catalysis.
    Wang H; Zhang T; Zhou X
    J Phys Condens Matter; 2019 Nov; 31(47):473001. PubMed ID: 31315095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark-field microscopy in imaging of plasmon resonant nanoparticles.
    Liu M; Chao J; Deng S; Wang K; Li K; Fan C
    Colloids Surf B Biointerfaces; 2014 Dec; 124():111-7. PubMed ID: 25009105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles.
    Liu Y; Huang CZ
    Nanoscale; 2013 Aug; 5(16):7458-66. PubMed ID: 23831964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single plasmonic nanoparticles as ultrasensitive sensors.
    Xie T; Jing C; Long YT
    Analyst; 2017 Jan; 142(3):409-420. PubMed ID: 28004043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction.
    Shi L; Jing C; Ma W; Li DW; Halls JE; Marken F; Long YT
    Angew Chem Int Ed Engl; 2013 Jun; 52(23):6011-4. PubMed ID: 23616358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells.
    Gu Z; Jing C; Ying YL; He P; Long YT
    Theranostics; 2015; 5(2):188-95. PubMed ID: 25553107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capping-agent-free synthesis of substrate-supported porous icosahedral gold nanoparticles.
    Wu JH; Guan Z; Yang SK; Yuan P; Xu QH; Xu GQ
    Nanoscale; 2013 Apr; 5(7):2983-9. PubMed ID: 23455229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Change of a Single Ag Nanoparticle Observed by Dark-field Microspectroscopy.
    Pang J; Liu HL; Li J; Zhai TT; Wang K; Xia XH
    Chemphyschem; 2018 Apr; 19(8):954-958. PubMed ID: 29383796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis.
    Sriram M; Markhali BP; Nicovich PR; Bennett DT; Reece PJ; Brynn Hibbert D; Tilley RD; Gaus K; Vivekchand SRC; Gooding JJ
    Biosens Bioelectron; 2018 Oct; 117():530-536. PubMed ID: 29982124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives.
    Ma J; Wang X; Feng J; Huang C; Fan Z
    Small; 2021 Feb; 17(8):e2004287. PubMed ID: 33522074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weak Reaction Scatterometry of Plasmonic Resonance Light Scattering with Machine Learning.
    Ma YP; Li Q; Luo JB; Huang CZ; Zhou J
    Anal Chem; 2021 Sep; 93(35):12131-12138. PubMed ID: 34432436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Characterization of Tunable Rainbow Colored Colloidal Silver Nanoparticles Using Single-Nanoparticle Plasmonic Microscopy and Spectroscopy.
    Huang T; Nancy Xu XH
    J Mater Chem; 2010 Jan; 20(44):9867-9876. PubMed ID: 22707855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.
    Wang C; Nie XG; Shi Y; Zhou Y; Xu JJ; Xia XH; Chen HY
    ACS Nano; 2017 Jun; 11(6):5897-5905. PubMed ID: 28494145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Plasmonic Resonance Scattering Imaging Analysis via Deep Learning.
    Song MK; Chen SX; Hu PP; Huang CZ; Zhou J
    Anal Chem; 2021 Feb; 93(4):2619-2626. PubMed ID: 33427440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ investigating the size-dependent scattering signatures and sensing sensitivity of single silver nanocube through a multi-model approach.
    Pan ZY; Zhou J; Zou HY; Li YF; Gao PF; Huang CZ
    J Colloid Interface Sci; 2021 Feb; 584():253-262. PubMed ID: 33069024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfluidic channels.
    Navarro JR; Werts MH
    Analyst; 2013 Jan; 138(2):583-92. PubMed ID: 23172138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic scattering imaging of single Cu
    Zou H; Gong L; Xu Y; Ni H; Jiang Y; Li Y; Huang C; Liu Q
    Talanta; 2023 Aug; 261():124663. PubMed ID: 37209587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chrominance to dimension: a real-time method for measuring the size of single gold nanoparticles.
    Jing C; Gu Z; Ying YL; Li DW; Zhang L; Long YT
    Anal Chem; 2012 May; 84(10):4284-91. PubMed ID: 22500563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.