These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Peltier cooling in molecular junctions. Cui L; Miao R; Wang K; Thompson D; Zotti LA; Cuevas JC; Meyhofer E; Reddy P Nat Nanotechnol; 2018 Feb; 13(2):122-127. PubMed ID: 29255291 [TBL] [Abstract][Full Text] [Related]
5. Heat dissipation in atomic-scale junctions. Lee W; Kim K; Jeong W; Zotti LA; Pauly F; Cuevas JC; Reddy P Nature; 2013 Jun; 498(7453):209-12. PubMed ID: 23765496 [TBL] [Abstract][Full Text] [Related]
6. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. Majumdar S; Sierra-Suarez JA; Schiffres SN; Ong WL; Higgs CF; McGaughey AJ; Malen JA Nano Lett; 2015 May; 15(5):2985-91. PubMed ID: 25884912 [TBL] [Abstract][Full Text] [Related]
7. Simulations of heat transport in single-molecule junctions: Investigations of the thermal diode effect. Wang JJ; Gong J; McGaughey AJH; Segal D J Chem Phys; 2022 Nov; 157(17):174105. PubMed ID: 36347668 [TBL] [Abstract][Full Text] [Related]
8. Heat conduction in polymer chains: Effect of substrate on the thermal conductance. Dinpajooh M; Nitzan A J Chem Phys; 2022 Apr; 156(14):144901. PubMed ID: 35428392 [TBL] [Abstract][Full Text] [Related]
9. Stretching-Induced Conductance Variations as Fingerprints of Contact Configurations in Single-Molecule Junctions. Kim YH; Kim HS; Lee J; Tsutsui M; Kawai T J Am Chem Soc; 2017 Jun; 139(24):8286-8294. PubMed ID: 28537729 [TBL] [Abstract][Full Text] [Related]
10. Stochastic simulation of nonequilibrium heat conduction in extended molecular junctions. Sharony I; Chen R; Nitzan A J Chem Phys; 2020 Oct; 153(14):144113. PubMed ID: 33086795 [TBL] [Abstract][Full Text] [Related]
11. Electrostatic control of thermoelectricity in molecular junctions. Kim Y; Jeong W; Kim K; Lee W; Reddy P Nat Nanotechnol; 2014 Nov; 9(11):881-5. PubMed ID: 25282046 [TBL] [Abstract][Full Text] [Related]
14. Too Hot for Photon-Assisted Transport: Hot-Electrons Dominate Conductance Enhancement in Illuminated Single-Molecule Junctions. Fung ED; Adak O; Lovat G; Scarabelli D; Venkataraman L Nano Lett; 2017 Feb; 17(2):1255-1261. PubMed ID: 28112947 [TBL] [Abstract][Full Text] [Related]
15. Signatures of Conformational Dynamics and Electrode-Molecule Interactions in the Conductance Profile During Pulling of Single-Molecule Junctions. Mejía L; Renaud N; Franco I J Phys Chem Lett; 2018 Feb; 9(4):745-750. PubMed ID: 29369638 [TBL] [Abstract][Full Text] [Related]
16. Length-dependent thermopower of highly conducting Au-C bonded single molecule junctions. Widawsky JR; Chen W; Vázquez H; Kim T; Breslow R; Hybertsen MS; Venkataraman L Nano Lett; 2013 Jun; 13(6):2889-94. PubMed ID: 23682792 [TBL] [Abstract][Full Text] [Related]
17. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
18. Influence of Quantum Interference on the Thermoelectric Properties of Molecular Junctions. Miao R; Xu H; Skripnik M; Cui L; Wang K; Pedersen KGL; Leijnse M; Pauly F; Wärnmark K; Meyhofer E; Reddy P; Linke H Nano Lett; 2018 Sep; 18(9):5666-5672. PubMed ID: 30084643 [TBL] [Abstract][Full Text] [Related]
19. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation. Sadeghi H; Sangtarash S; Lambert CJ Nano Lett; 2015 Nov; 15(11):7467-72. PubMed ID: 26458053 [TBL] [Abstract][Full Text] [Related]
20. Charge transport in hybrid platinum/molecule/graphene single molecule junctions. He C; Zhang Q; Gao T; Liu C; Chen Z; Zhao C; Zhao C; Nichols RJ; Dappe YJ; Yang L Phys Chem Chem Phys; 2020 Jun; 22(24):13498-13504. PubMed ID: 32530005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]