These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
766 related articles for article (PubMed ID: 31315159)
1. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Yu C; Xie S; Niu S; Ji Z; Fan W; Yuan S; Liu Q; Chen Q Med Phys; 2019 Oct; 46(10):4502-4519. PubMed ID: 31315159 [TBL] [Abstract][Full Text] [Related]
2. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913 [TBL] [Abstract][Full Text] [Related]
3. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
4. Fast and Automated Hyperreflective Foci Segmentation Based on Image Enhancement and Improved 3D U-Net in SD-OCT Volumes with Diabetic Retinopathy. Xie S; Okuwobi IP; Li M; Zhang Y; Yuan S; Chen Q Transl Vis Sci Technol; 2020 Apr; 9(2):21. PubMed ID: 32818082 [TBL] [Abstract][Full Text] [Related]
5. OCT Hyperreflective Retinal Foci in Diabetic Retinopathy: A Semi-Automatic Detection Comparative Study. Midena E; Torresin T; Velotta E; Pilotto E; Parrozzani R; Frizziero L Front Immunol; 2021; 12():613051. PubMed ID: 33968016 [TBL] [Abstract][Full Text] [Related]
6. Multimodality analysis of Hyper-reflective Foci and Hard Exudates in Patients with Diabetic Retinopathy. Niu S; Yu C; Chen Q; Yuan S; Lin J; Fan W; Liu Q Sci Rep; 2017 May; 7(1):1568. PubMed ID: 28484225 [TBL] [Abstract][Full Text] [Related]
7. Automatic segmentation of hyperreflective foci in OCT images. Varga L; Kovács A; Grósz T; Thury G; Hadarits F; Dégi R; Dombi J Comput Methods Programs Biomed; 2019 Sep; 178():91-103. PubMed ID: 31416566 [TBL] [Abstract][Full Text] [Related]
8. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks. Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802 [TBL] [Abstract][Full Text] [Related]
9. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485 [TBL] [Abstract][Full Text] [Related]
10. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
11. Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images. Ji Z; Chen Q; Niu S; Leng T; Rubin DL Transl Vis Sci Technol; 2018 Jan; 7(1):1. PubMed ID: 29302382 [TBL] [Abstract][Full Text] [Related]
12. Automated Region of Interest Selection Improves Deep Learning-Based Segmentation of Hyper-Reflective Foci in Optical Coherence Tomography Images. Goel S; Sethi A; Pfau M; Munro M; Chan RVP; Lim JI; Hallak J; Alam M J Clin Med; 2022 Dec; 11(24):. PubMed ID: 36556019 [TBL] [Abstract][Full Text] [Related]
13. Hyper-reflective dots in optical coherence tomography imaging and inflammation markers in diabetic retinopathy. Mat Nor MN; Guo CX; Green CR; Squirrell D; Acosta ML J Anat; 2023 Oct; 243(4):697-705. PubMed ID: 37222261 [TBL] [Abstract][Full Text] [Related]
14. Deep learning based retinal OCT segmentation. Pekala M; Joshi N; Liu TYA; Bressler NM; DeBuc DC; Burlina P Comput Biol Med; 2019 Nov; 114():103445. PubMed ID: 31561100 [TBL] [Abstract][Full Text] [Related]
15. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. ElTanboly A; Ismail M; Shalaby A; Switala A; El-Baz A; Schaal S; Gimel'farb G; El-Azab M Med Phys; 2017 Mar; 44(3):914-923. PubMed ID: 28035657 [TBL] [Abstract][Full Text] [Related]
16. Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning. Guo Y; Hormel TT; Xiong H; Wang J; Hwang TS; Jia Y Transl Vis Sci Technol; 2020 Oct; 9(2):54. PubMed ID: 33110708 [TBL] [Abstract][Full Text] [Related]
17. A Hybrid Model Composed of Two Convolutional Neural Networks (CNNs) for Automatic Retinal Layer Segmentation of OCT Images in Retinitis Pigmentosa (RP). Wang YZ; Wu W; Birch DG Transl Vis Sci Technol; 2021 Nov; 10(13):9. PubMed ID: 34751740 [TBL] [Abstract][Full Text] [Related]
18. Multiclass retinal disease classification and lesion segmentation in OCT B-scan images using cascaded convolutional networks. Zhong P; Wang J; Guo Y; Fu X; Wang R Appl Opt; 2020 Nov; 59(33):10312-10320. PubMed ID: 33361962 [TBL] [Abstract][Full Text] [Related]
19. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455 [TBL] [Abstract][Full Text] [Related]
20. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]