These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
766 related articles for article (PubMed ID: 31315159)
21. Precise higher-order reflectivity and morphology models for early diagnosis of diabetic retinopathy using OCT images. Sharafeldeen A; Elsharkawy M; Khalifa F; Soliman A; Ghazal M; AlHalabi M; Yaghi M; Alrahmawy M; Elmougy S; Sandhu HS; El-Baz A Sci Rep; 2021 Feb; 11(1):4730. PubMed ID: 33633139 [TBL] [Abstract][Full Text] [Related]
22. Automatic exudate and aneurysm segmentation in OCT images using UNET++ and hyperreflective-foci feature based bagged tree ensemble. Tanthanathewin R; Wongrattanapipat W; Khaing TT; Aimmanee P PLoS One; 2024; 19(5):e0304146. PubMed ID: 38787844 [TBL] [Abstract][Full Text] [Related]
23. Automatic Segmentation of Hyperreflective Foci in OCT Images Based on Lightweight DBR Network. Wei J; Yu S; Du Y; Liu K; Xu Y; Xu X J Digit Imaging; 2023 Jun; 36(3):1148-1157. PubMed ID: 36749455 [TBL] [Abstract][Full Text] [Related]
24. Automated choroid segmentation of three-dimensional SD-OCT images by incorporating EDI-OCT images. Chen Q; Niu S; Fang W; Shuai Y; Fan W; Yuan S; Liu Q Comput Methods Programs Biomed; 2018 May; 158():161-171. PubMed ID: 29544782 [TBL] [Abstract][Full Text] [Related]
25. Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images. Eladawi N; Elmogy M; Khalifa F; Ghazal M; Ghazi N; Aboelfetouh A; Riad A; Sandhu H; Schaal S; El-Baz A Med Phys; 2018 Oct; 45(10):4582-4599. PubMed ID: 30144102 [TBL] [Abstract][Full Text] [Related]
26. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
27. Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans. Alsaih K; Yusoff MZ; Tang TB; Faye I; Mériaudeau F Comput Methods Programs Biomed; 2020 Oct; 195():105566. PubMed ID: 32504911 [TBL] [Abstract][Full Text] [Related]
28. A new texture-based labeling framework for hyper-reflective foci identification in retinal optical coherence tomography images. Monemian M; Daneshmand PG; Rakhshani S; Rabbani H Sci Rep; 2024 Oct; 14(1):22933. PubMed ID: 39358477 [TBL] [Abstract][Full Text] [Related]
29. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders. Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202 [TBL] [Abstract][Full Text] [Related]
31. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images. Sun Z; Sun Y J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697 [TBL] [Abstract][Full Text] [Related]
32. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images. Lin M; Bao G; Sang X; Wu Y Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040 [TBL] [Abstract][Full Text] [Related]
33. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897 [TBL] [Abstract][Full Text] [Related]
34. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Gegundez-Arias ME; Marin-Santos D; Perez-Borrero I; Vasallo-Vazquez MJ Comput Methods Programs Biomed; 2021 Jun; 205():106081. PubMed ID: 33882418 [TBL] [Abstract][Full Text] [Related]
35. Joint Segmentation of Multi-Class Hyper-Reflective Foci in Retinal Optical Coherence Tomography Images. Yao C; Wang M; Zhu W; Huang H; Shi F; Chen Z; Wang L; Wang T; Zhou Y; Peng Y; Zhu L; Chen H; Chen X IEEE Trans Biomed Eng; 2022 Apr; 69(4):1349-1358. PubMed ID: 34570700 [TBL] [Abstract][Full Text] [Related]
36. Segmentation of choroidal area in optical coherence tomography images using a transfer learning-based conventional neural network: a focus on diabetic retinopathy and a literature review. Saeidian J; Azimi H; Azimi Z; Pouya P; Asadigandomani H; Riazi-Esfahani H; Hayati A; Daneshvar K; Khalili Pour E BMC Med Imaging; 2024 Oct; 24(1):281. PubMed ID: 39425019 [TBL] [Abstract][Full Text] [Related]
37. A new retinal OCT-angiography diabetic retinopathy dataset for segmentation and DR grading. Ma F; Wang S; Dai C; Qi F; Meng J J Biophotonics; 2023 Nov; 16(11):e202300052. PubMed ID: 37421596 [TBL] [Abstract][Full Text] [Related]
38. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
39. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
40. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images. Hu W; Zhang Y; Li L Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]