BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31315177)

  • 1. Effect of Staple Age on DNA Origami Nanostructure Assembly and Stability.
    Kielar C; Xin Y; Xu X; Zhu S; Gorin N; Grundmeier G; Möser C; Smith DM; Keller A
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31315177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation.
    Ramakrishnan S; Schärfen L; Hunold K; Fricke S; Grundmeier G; Schlierf M; Keller A; Krainer G
    Nanoscale; 2019 Sep; 11(35):16270-16276. PubMed ID: 31455950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superstructure-dependent stability of DNA origami nanostructures in the presence of chaotropic denaturants.
    Hanke M; Dornbusch D; Tomm E; Grundmeier G; Fahmy K; Keller A
    Nanoscale; 2023 Oct; 15(41):16590-16600. PubMed ID: 37747200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Ionic Strength on the Thermal Stability of DNA Origami Nanostructures.
    Hanke M; Tomm E; Grundmeier G; Keller A
    Chembiochem; 2023 Jun; 24(12):e202300338. PubMed ID: 37140402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA origami frame filled with two types of single-stranded tiles.
    Chen C; Xu J; Ruan L; Zhao H; Li X; Shi X
    Nanoscale; 2022 Apr; 14(14):5340-5346. PubMed ID: 35352725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.
    Kielar C; Xin Y; Shen B; Kostiainen MA; Grundmeier G; Linko V; Keller A
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9470-9474. PubMed ID: 29799663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization and structural changes of 2D DNA origami by enzymatic ligation.
    Rajendran A; Krishnamurthy K; Giridasappa A; Nakata E; Morii T
    Nucleic Acids Res; 2021 Aug; 49(14):7884-7900. PubMed ID: 34289063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template.
    Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryopreservation of DNA Origami Nanostructures.
    Xin Y; Kielar C; Zhu S; Sikeler C; Xu X; Möser C; Grundmeier G; Liedl T; Heuer-Jungemann A; Smith DM; Keller A
    Small; 2020 Apr; 16(13):e1905959. PubMed ID: 32130783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy.
    Endo M
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed Protein Adsorption Through DNA Origami Masks.
    Ramakrishnan S; Grundmeier G; Keller A
    Methods Mol Biol; 2018; 1811():253-262. PubMed ID: 29926458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
    Song J; Zhang Z; Zhang S; Liu L; Li Q; Xie E; Gothelf KV; Besenbacher F; Dong M
    Small; 2013 Sep; 9(17):2954-9. PubMed ID: 23436715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cation-dependent assembly of hexagonal DNA origami lattices on SiO
    Pothineni BK; Grundmeier G; Keller A
    Nanoscale; 2023 Aug; 15(31):12894-12906. PubMed ID: 37462427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Observation of Superstructure-Dependent DNA Origami Digestion by DNase I Using High-Speed Atomic Force Microscopy.
    Ramakrishnan S; Shen B; Kostiainen MA; Grundmeier G; Keller A; Linko V
    Chembiochem; 2019 Nov; 20(22):2818-2823. PubMed ID: 31163091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanopore fingerprinting of supramolecular DNA nanostructures.
    Confederat S; Sandei I; Mohanan G; Wälti C; Actis P
    Biophys J; 2022 Dec; 121(24):4882-4891. PubMed ID: 35986518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programming 2D Supramolecular Assemblies with Wireframe DNA Origami.
    Wang X; Jun H; Bathe M
    J Am Chem Soc; 2022 Mar; 144(10):4403-4409. PubMed ID: 35230115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cotranscriptional Folding of a Bio-orthogonal Fluorescent Scaffolded RNA Origami.
    Torelli E; Kozyra J; Shirt-Ediss B; Piantanida L; Voïtchovsky K; Krasnogor N
    ACS Synth Biol; 2020 Jul; 9(7):1682-1692. PubMed ID: 32470289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures.
    Bednarz A; Sønderskov SM; Dong M; Birkedal V
    Nanoscale; 2023 Jan; 15(3):1317-1326. PubMed ID: 36545884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.