These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31315201)

  • 1. Rayleigh Wave Calibration of Acoustic Emission Sensors and Ultrasonic Transducers.
    Ono K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31315201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission Sensitivities of Contact Ultrasonic Transducers and Their Applications.
    Ono K; Cho H; Vallen H; M'Closkey RT
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Piezoelectric Detection of Guided Ultrasonic Waves.
    Ono K
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29156579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency Dependence of Receiving Sensitivity of Ultrasonic Transducers and Acoustic Emission Sensors.
    Ono K
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30424019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration Methods of Acoustic Emission Sensors.
    Ono K
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printable Piezoelectric Composite Sensors for Acoustically Adapted Guided Ultrasonic Wave Detection.
    Roloff T; Mitkus R; Lion JN; Sinapius M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of SAW Humidity Sensors Based on ( 11 2 ¯ 0 ) ZnO/R-Sapphire Structures.
    Lan XD; Zhang SY; Fan L; Wang Y
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary calibration by reciprocity method of high-frequency acoustic-emission piezoelectric transducers.
    Haas M; Cihak-Bayr U; Tomastik C; Jech M; Gröschl M
    J Acoust Soc Am; 2018 Jun; 143(6):3557. PubMed ID: 29960487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers.
    Zhang S; Li X; Jeong H; Hu H
    Ultrasonics; 2018 Sep; 89():118-125. PubMed ID: 29778060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach-Zehnder Interferometer.
    Lan C; Zhou W; Xie Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29659540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an ultrasonic sensor for measuring distance and detecting obstacles.
    Park J; Je Y; Lee H; Moon W
    Ultrasonics; 2010 Mar; 50(3):340-6. PubMed ID: 19919873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocity calibration of impulse responses of acoustic emission transducers.
    Hatano H; Chaya T; Watanabe S; Jinbo K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1221-8. PubMed ID: 18244283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.
    Liu M; Zeng Z; Xu H; Liao Y; Zhou L; Zhang Z; Su Z
    Ultrasonics; 2017 Jul; 78():166-174. PubMed ID: 28371650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of Rayleigh waves interaction with a spherical ball in contact with a plane surface for the development of new NDT method for ball bearings.
    Bouzzit A; Martinez L; Arciniegas A; Hebaz SE; Wilkie-Chancellier N
    Ultrasonics; 2024 Jan; 136():107156. PubMed ID: 37683365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alternative Rayleigh wave excitation method using an ultrasonic phased array.
    Verma B; Bélanger P
    Ultrasonics; 2023 Dec; 135():107121. PubMed ID: 37572395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the Acoustic Non-Linearity Parameter of Materials by Exciting Reversed-Phase Rayleigh Waves in Opposite Directions.
    Yan B; Song Y; Nie S; Yang M; Liu Z
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic Strain Determination With Nonlinear Ultrasonic Waves Using In Situ Integrated Piezoelectric Ultrasonic Transducers.
    Guo S; Chen S; Zhang L; Chen YF; Yao K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):95-101. PubMed ID: 29283351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEMS Vibrometer for Structural Health Monitoring Using Guided Ultrasonic Waves.
    Haus JN; Lang W; Roloff T; Rittmeier L; Bornemann S; Sinapius M; Dietzel A
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment.
    Bhuiyan MY; Giurgiutiu V
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28817081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.