BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 31315562)

  • 1. MCtandem: an efficient tool for large-scale peptide identification on many integrated core (MIC) architecture.
    Li C; Li K; Li K; Lin F
    BMC Bioinformatics; 2019 Jul; 20(1):397. PubMed ID: 31315562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SW-Tandem: a highly efficient tool for large-scale peptide identification with parallel spectrum dot product on Sunway TaihuLight.
    Li C; Li K; Chen T; Zhu Y; He Q
    Bioinformatics; 2019 Oct; 35(19):3861-3863. PubMed ID: 30821318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating the scoring module of mass spectrometry-based peptide identification using GPUs.
    Li Y; Chi H; Xia L; Chu X
    BMC Bioinformatics; 2014 Apr; 15():121. PubMed ID: 24773593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SWPepNovo: An Efficient De Novo Peptide Sequencing Tool for Large-scale MS/MS Spectra Analysis.
    Li C; Li K; Li K; Xie X; Lin F
    Int J Biol Sci; 2019; 15(9):1787-1801. PubMed ID: 31523183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient computation of motif discovery on Intel Many Integrated Core (MIC) Architecture.
    Peng S; Cheng M; Huang K; Cui Y; Zhang Z; Guo R; Zhang X; Yang S; Liao X; Lu Y; Zou Q; Shi B
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):282. PubMed ID: 30367570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MUMAL2: Improving sensitivity in shotgun proteomics using cost sensitive artificial neural networks and a threshold selector algorithm.
    Cerqueira FR; Ricardo AM; de Paiva Oliveira A; Graber A; Baumgartner C
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):472. PubMed ID: 28105913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pClean: An Algorithm To Preprocess High-Resolution Tandem Mass Spectra for Database Searching.
    Deng Y; Ren Z; Pan Q; Qi D; Wen B; Ren Y; Yang H; Wu L; Chen F; Liu S
    J Proteome Res; 2019 Sep; 18(9):3235-3244. PubMed ID: 31364357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Identification from Tandem Mass Spectra by Database Searching.
    Edwards NJ
    Methods Mol Biol; 2017; 1558():357-380. PubMed ID: 28150247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MZDASoft: a software architecture that enables large-scale comparison of protein expression levels over multiple samples based on liquid chromatography/tandem mass spectrometry.
    Ghanat Bari M; Ramirez N; Wang Z; Zhang JM
    Rapid Commun Mass Spectrom; 2015 Oct; 29(19):1841-8. PubMed ID: 26331936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein identification by tandem mass spectrometry and sequence database searching.
    Nesvizhskii AI
    Methods Mol Biol; 2007; 367():87-119. PubMed ID: 17185772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Open Modification Spectral Library Searching through Approximate Nearest Neighbor Indexing.
    Bittremieux W; Meysman P; Noble WS; Laukens K
    J Proteome Res; 2018 Oct; 17(10):3463-3474. PubMed ID: 30184435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CPU/MIC Collaborated Parallel Framework for GROMACS on Tianhe-2 Supercomputer.
    Peng S; Cui Y; Yang S; Su W; Zhang X; Zhang T; Liu W; Zhao X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):425-433. PubMed ID: 28641267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deconvolution of mixture spectra and increased throughput of peptide identification by utilization of intensified complementary ions formed in tandem mass spectrometry.
    Kryuchkov F; Verano-Braga T; Hansen TA; Sprenger RR; Kjeldsen F
    J Proteome Res; 2013 Jul; 12(7):3362-71. PubMed ID: 23725413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IPeak: An open source tool to combine results from multiple MS/MS search engines.
    Wen B; Du C; Li G; Ghali F; Jones AR; Käll L; Xu S; Zhou R; Ren Z; Feng Q; Xu X; Wang J
    Proteomics; 2015 Sep; 15(17):2916-20. PubMed ID: 25951428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faster SEQUEST searching for peptide identification from tandem mass spectra.
    Diament BJ; Noble WS
    J Proteome Res; 2011 Sep; 10(9):3871-9. PubMed ID: 21761931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms.
    Adamo ME; Gerber SA
    Curr Protoc Bioinformatics; 2016 Sep; 55():13.29.1-13.29.23. PubMed ID: 27603022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification?
    Muth T; Renard BY
    Brief Bioinform; 2018 Sep; 19(5):954-970. PubMed ID: 28369237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.