These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 31315562)

  • 61. Mass spectrum sequential subtraction speeds up searching large peptide MS/MS spectra datasets against large nucleotide databases for proteogenomics.
    Helmy M; Sugiyama N; Tomita M; Ishihama Y
    Genes Cells; 2012 Aug; 17(8):633-44. PubMed ID: 22686349
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Extremely Fast and Accurate Open Modification Spectral Library Searching of High-Resolution Mass Spectra Using Feature Hashing and Graphics Processing Units.
    Bittremieux W; Laukens K; Noble WS
    J Proteome Res; 2019 Oct; 18(10):3792-3799. PubMed ID: 31448616
    [TBL] [Abstract][Full Text] [Related]  

  • 63. PTMTreeSearch: a novel two-stage tree-search algorithm with pruning rules for the identification of post-translational modification of proteins in MS/MS spectra.
    Kertész-Farkas A; Reiz B; Vera R; Myers MP; Pongor S
    Bioinformatics; 2014 Jan; 30(2):234-41. PubMed ID: 24215026
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tempest: GPU-CPU computing for high-throughput database spectral matching.
    Milloy JA; Faherty BK; Gerber SA
    J Proteome Res; 2012 Jul; 11(7):3581-91. PubMed ID: 22640374
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interrogation of MS/MS search data with an pI Filter algorithm to increase protein identification success.
    Uwaje NC; Mueller NS; Maccarrone G; Turck CW
    Electrophoresis; 2007 Jun; 28(12):1867-74. PubMed ID: 17516581
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Semisupervised Machine Learning for Sensitive Open Modification Spectral Library Searching.
    Arab I; Fondrie WE; Laukens K; Bittremieux W
    J Proteome Res; 2023 Feb; 22(2):585-593. PubMed ID: 36688569
    [TBL] [Abstract][Full Text] [Related]  

  • 67. MapReduce implementation of a hybrid spectral library-database search method for large-scale peptide identification.
    Kalyanaraman A; Cannon WR; Latt B; Baxter DJ
    Bioinformatics; 2011 Nov; 27(21):3072-3. PubMed ID: 21926122
    [TBL] [Abstract][Full Text] [Related]  

  • 68. MS-REDUCE: an ultrafast technique for reduction of big mass spectrometry data for high-throughput processing.
    Awan MG; Saeed F
    Bioinformatics; 2016 May; 32(10):1518-26. PubMed ID: 26801958
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A ranking-based scoring function for peptide-spectrum matches.
    Frank AM
    J Proteome Res; 2009 May; 8(5):2241-52. PubMed ID: 19231891
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Exhaustively Identifying Cross-Linked Peptides with a Linear Computational Complexity.
    Yu F; Li N; Yu W
    J Proteome Res; 2017 Oct; 16(10):3942-3952. PubMed ID: 28825304
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Application of de Novo Sequencing to Large-Scale Complex Proteomics Data Sets.
    Devabhaktuni A; Elias JE
    J Proteome Res; 2016 Mar; 15(3):732-42. PubMed ID: 26743026
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Confidence assignment for mass spectrometry based peptide identifications via the extreme value distribution.
    Alves G; Yu YK
    Bioinformatics; 2016 Sep; 32(17):2642-9. PubMed ID: 27153659
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dinosaur: A Refined Open-Source Peptide MS Feature Detector.
    Teleman J; Chawade A; Sandin M; Levander F; Malmström J
    J Proteome Res; 2016 Jul; 15(7):2143-51. PubMed ID: 27224449
    [TBL] [Abstract][Full Text] [Related]  

  • 74. DeNovoID: a web-based tool for identifying peptides from sequence and mass tags deduced from de novo peptide sequencing by mass spectroscopy.
    Halligan BD; Ruotti V; Twigger SN; Greene AS
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W376-81. PubMed ID: 15980493
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Peptide reranking with protein-peptide correspondence and precursor peak intensity information.
    Yang C; He Z; Yang C; Yu W
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1212-9. PubMed ID: 22350209
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Improving peptide identification with single-stage mass spectrum peaks.
    He Z; Yu W
    Bioinformatics; 2009 Nov; 25(22):2969-74. PubMed ID: 19689954
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Exploiting the kernel trick to correlate fragment ions for peptide identification via tandem mass spectrometry.
    Fu Y; Yang Q; Sun R; Li D; Zeng R; Ling CX; Gao W
    Bioinformatics; 2004 Aug; 20(12):1948-54. PubMed ID: 15044235
    [TBL] [Abstract][Full Text] [Related]  

  • 78. PepSOM: an algorithm for peptide identification by tandem mass spectrometry based on SOM.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2006; 17(2):194-205. PubMed ID: 17503392
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Artificial decoy spectral libraries for false discovery rate estimation in spectral library searching in proteomics.
    Lam H; Deutsch EW; Aebersold R
    J Proteome Res; 2010 Jan; 9(1):605-10. PubMed ID: 19916561
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics.
    Lam H; Aebersold R
    Methods; 2011 Aug; 54(4):424-31. PubMed ID: 21277371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.