These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 31315618)
1. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618 [TBL] [Abstract][Full Text] [Related]
2. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. Mitra A; Banerjee PS; Roy S; Roy S; Setua SK Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079 [TBL] [Abstract][Full Text] [Related]
3. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Mvoulana A; Kachouri R; Akil M Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937 [TBL] [Abstract][Full Text] [Related]
4. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation. Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M IEEE J Biomed Health Inform; 2019 Jul; 23(4):1417-1426. PubMed ID: 30762573 [TBL] [Abstract][Full Text] [Related]
5. An Efficient Deep Learning Approach to Automatic Glaucoma Detection Using Optic Disc and Optic Cup Localization. Nawaz M; Nazir T; Javed A; Tariq U; Yong HS; Khan MA; Cha J Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062405 [TBL] [Abstract][Full Text] [Related]
6. Application of a deep learning system in glaucoma screening and further classification with colour fundus photographs: a case control study. Hung KH; Kao YC; Tang YH; Chen YT; Wang CH; Wang YC; Lee OK BMC Ophthalmol; 2022 Dec; 22(1):483. PubMed ID: 36510171 [TBL] [Abstract][Full Text] [Related]
7. Joint optic disc and cup segmentation using semi-supervised conditional GANs. Liu S; Hong J; Lu X; Jia X; Lin Z; Zhou Y; Liu Y; Zhang H Comput Biol Med; 2019 Dec; 115():103485. PubMed ID: 31630029 [TBL] [Abstract][Full Text] [Related]
8. Pathological myopia classification with simultaneous lesion segmentation using deep learning. Hemelings R; Elen B; Blaschko MB; Jacob J; Stalmans I; De Boever P Comput Methods Programs Biomed; 2021 Feb; 199():105920. PubMed ID: 33412285 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided diagnosis of glaucoma using fundus images: A review. Hagiwara Y; Koh JEW; Tan JH; Bhandary SV; Laude A; Ciaccio EJ; Tong L; Acharya UR Comput Methods Programs Biomed; 2018 Oct; 165():1-12. PubMed ID: 30337064 [TBL] [Abstract][Full Text] [Related]
10. Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images. An G; Omodaka K; Hashimoto K; Tsuda S; Shiga Y; Takada N; Kikawa T; Yokota H; Akiba M; Nakazawa T J Healthc Eng; 2019; 2019():4061313. PubMed ID: 30911364 [TBL] [Abstract][Full Text] [Related]
11. Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning. Hemelings R; Elen B; Barbosa-Breda J; Lemmens S; Meire M; Pourjavan S; Vandewalle E; Van de Veire S; Blaschko MB; De Boever P; Stalmans I Acta Ophthalmol; 2020 Feb; 98(1):e94-e100. PubMed ID: 31344328 [TBL] [Abstract][Full Text] [Related]
12. Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection. Jiang Y; Xia H; Xu Y; Cheng J; Fu H; Duan L; Meng Z; Liu J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():862-865. PubMed ID: 30440527 [TBL] [Abstract][Full Text] [Related]
13. WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images. Kadambi S; Wang Z; Xing E Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1205-1213. PubMed ID: 32445127 [TBL] [Abstract][Full Text] [Related]
14. A novel lightweight deep learning approach for simultaneous optic cup and optic disc segmentation in glaucoma detection. Song Y; Zhang W; Zhang Y Math Biosci Eng; 2024 Mar; 21(4):5092-5117. PubMed ID: 38872528 [TBL] [Abstract][Full Text] [Related]
15. Optic Disc Segmentation from Retinal Fundus Images via Deep Object Detection Networks. Sun X; Xu Y; Zhao W; You T; Liu J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5954-5957. PubMed ID: 30441692 [TBL] [Abstract][Full Text] [Related]
16. Assessing the Efficacy of Synthetic Optic Disc Images for Detecting Glaucomatous Optic Neuropathy Using Deep Learning. Chaurasia AK; MacGregor S; Craig JE; Mackey DA; Hewitt AW Transl Vis Sci Technol; 2024 Jun; 13(6):1. PubMed ID: 38829624 [TBL] [Abstract][Full Text] [Related]
17. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model. Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355 [TBL] [Abstract][Full Text] [Related]
18. An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning. Wang Y; Yu X; Wu C J Digit Imaging; 2022 Jun; 35(3):638-653. PubMed ID: 35212860 [TBL] [Abstract][Full Text] [Related]
19. Deep learning on fundus images detects glaucoma beyond the optic disc. Hemelings R; Elen B; Barbosa-Breda J; Blaschko MB; De Boever P; Stalmans I Sci Rep; 2021 Oct; 11(1):20313. PubMed ID: 34645908 [TBL] [Abstract][Full Text] [Related]
20. Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning. Zhao R; Chen X; Liu X; Chen Z; Guo F; Li S IEEE J Biomed Health Inform; 2020 Apr; 24(4):1104-1113. PubMed ID: 31403451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]