BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31315647)

  • 1. Disruption of nuclear speckles reduces chromatin interactions in active compartments.
    Hu S; Lv P; Yan Z; Wen B
    Epigenetics Chromatin; 2019 Jul; 12(1):43. PubMed ID: 31315647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes.
    Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B
    Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SON and SRRM2 are essential for nuclear speckle formation.
    Ilik İA; Malszycki M; Lübke AK; Schade C; Meierhofer D; Aktaş T
    Elife; 2020 Oct; 9():. PubMed ID: 33095160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOPORS, a tumor suppressor protein, contributes to the maintenance of higher-order chromatin architecture.
    Ji L; Huo X; Zhang Y; Yan Z; Wang Q; Wen B
    Biochim Biophys Acta Gene Regul Mech; 2020 May; 1863(5):194518. PubMed ID: 32113985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamins Organize the Global Three-Dimensional Genome from the Nuclear Periphery.
    Zheng X; Hu J; Yue S; Kristiani L; Kim M; Sauria M; Taylor J; Kim Y; Zheng Y
    Mol Cell; 2018 Sep; 71(5):802-815.e7. PubMed ID: 30201095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear speckles: molecular organization, biological function and role in disease.
    Galganski L; Urbanek MO; Krzyzosiak WJ
    Nucleic Acids Res; 2017 Oct; 45(18):10350-10368. PubMed ID: 28977640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SRRM2 phase separation drives assembly of nuclear speckle subcompartments.
    Zhang M; Gu Z; Guo S; Sun Y; Ma S; Yang S; Guo J; Fang C; Shu L; Ge Y; Chen Z; Wang B
    Cell Rep; 2024 Mar; 43(3):113827. PubMed ID: 38381607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.
    Su JH; Zheng P; Kinrot SS; Bintu B; Zhuang X
    Cell; 2020 Sep; 182(6):1641-1659.e26. PubMed ID: 32822575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Chromatin Architecture of Large Plant Genomes Determined by Local A/B Compartments.
    Dong P; Tu X; Chu PY; Lü P; Zhu N; Grierson D; Du B; Li P; Zhong S
    Mol Plant; 2017 Dec; 10(12):1497-1509. PubMed ID: 29175436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An RNA-dependent and phase-separated active subnuclear compartment safeguards repressive chromatin domains.
    Lerra L; Panatta M; Bär D; Zanini I; Tan JY; Pisano A; Mungo C; Baroux C; Panse VG; Marques AC; Santoro R
    Mol Cell; 2024 May; 84(9):1667-1683.e10. PubMed ID: 38599210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear AGO1 Regulates Gene Expression by Affecting Chromatin Architecture in Human Cells.
    Shuaib M; Parsi KM; Thimma M; Adroub SA; Kawaji H; Seridi L; Ghosheh Y; Fort A; Fallatah B; Ravasi T; Carninci P; Orlando V
    Cell Syst; 2019 Nov; 9(5):446-458.e6. PubMed ID: 31629687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extensive Heterogeneity and Intrinsic Variation in Spatial Genome Organization.
    Finn EH; Pegoraro G; Brandão HB; Valton AL; Oomen ME; Dekker J; Mirny L; Misteli T
    Cell; 2019 Mar; 176(6):1502-1515.e10. PubMed ID: 30799036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments.
    Meng F; Na I; Kurgan L; Uversky VN
    Int J Mol Sci; 2015 Dec; 17(1):. PubMed ID: 26712748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diploid genome architecture revealed by multi-omic data of hybrid mice.
    Han Z; Cui K; Placek K; Hong N; Lin C; Chen W; Zhao K; Jin W
    Genome Res; 2020 Aug; 30(8):1097-1106. PubMed ID: 32759226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA sequence-dependent chromatin architecture and nuclear hubs formation.
    Jabbari K; Chakraborty M; Wiehe T
    Sci Rep; 2019 Oct; 9(1):14646. PubMed ID: 31601866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SRRM2 organizes splicing condensates to regulate alternative splicing.
    Xu S; Lai SK; Sim DY; Ang WSL; Li HY; Roca X
    Nucleic Acids Res; 2022 Aug; 50(15):8599-8614. PubMed ID: 35929045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speculating on the Roles of Nuclear Speckles: How RNA-Protein Nuclear Assemblies Affect Gene Expression.
    Hasenson SE; Shav-Tal Y
    Bioessays; 2020 Oct; 42(10):e2000104. PubMed ID: 32720312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic meta-analysis of the interplay between 3D chromatin organization and gene expression programs under basal and stress conditions.
    Nurick I; Shamir R; Elkon R
    Epigenetics Chromatin; 2018 Aug; 11(1):49. PubMed ID: 30157915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.