These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31315652)

  • 1. Multilayered control of exon acquisition permits the emergence of novel forms of regulatory control.
    Avgan N; Wang JI; Fernandez-Chamorro J; Weatheritt RJ
    Genome Biol; 2019 Jul; 20(1):141. PubMed ID: 31315652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exonization of the LTR transposable elements in human genome.
    Piriyapongsa J; Polavarapu N; Borodovsky M; McDonald J
    BMC Genomics; 2007 Aug; 8():291. PubMed ID: 17725822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spliceosomal Introns: Features, Functions, and Evolution.
    Poverennaya IV; Roytberg MA
    Biochemistry (Mosc); 2020 Jul; 85(7):725-734. PubMed ID: 33040717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exonization of transposed elements: A challenge and opportunity for evolution.
    Schmitz J; Brosius J
    Biochimie; 2011 Nov; 93(11):1928-34. PubMed ID: 21787833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intronic motif pairs cooperate across exons to promote pre-mRNA splicing.
    Ke S; Chasin LA
    Genome Biol; 2010; 11(8):R84. PubMed ID: 20704715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal conditions for exonization of intronic sequences: 5' splice site formation in alu exons.
    Sorek R; Lev-Maor G; Reznik M; Dagan T; Belinky F; Graur D; Ast G
    Mol Cell; 2004 Apr; 14(2):221-31. PubMed ID: 15099521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation.
    Aznarez I; Barash Y; Shai O; He D; Zielenski J; Tsui LC; Parkinson J; Frey BJ; Rommens JM; Blencowe BJ
    Genome Res; 2008 Aug; 18(8):1247-58. PubMed ID: 18456862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposable elements in disease-associated cryptic exons.
    Vorechovsky I
    Hum Genet; 2010 Feb; 127(2):135-54. PubMed ID: 19823873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alu exonization events reveal features required for precise recognition of exons by the splicing machinery.
    Schwartz S; Gal-Mark N; Kfir N; Oren R; Kim E; Ast G
    PLoS Comput Biol; 2009 Mar; 5(3):e1000300. PubMed ID: 19266014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons.
    Lev-Maor G; Sorek R; Shomron N; Ast G
    Science; 2003 May; 300(5623):1288-91. PubMed ID: 12764196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and genetic dissection of recursive splicing.
    Joseph B; Scala C; Kondo S; Lai EC
    Life Sci Alliance; 2022 Jan; 5(1):. PubMed ID: 34759052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates.
    Sela N; Kim E; Ast G
    Genome Biol; 2010; 11(6):R59. PubMed ID: 20525173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data.
    Zhang W; Edwards A; Fan W; Fang Z; Deininger P; Zhang K
    BMC Genomics; 2013 Aug; 14():584. PubMed ID: 23984937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome.
    Sela N; Mersch B; Gal-Mark N; Lev-Maor G; Hotz-Wagenblatt A; Ast G
    Genome Biol; 2007; 8(6):R127. PubMed ID: 17594509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative splicing of Alu exons--two arms are better than one.
    Gal-Mark N; Schwartz S; Ast G
    Nucleic Acids Res; 2008 Apr; 36(6):2012-23. PubMed ID: 18276646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength.
    Wickramasinghe VO; Gonzàlez-Porta M; Perera D; Bartolozzi AR; Sibley CR; Hallegger M; Ule J; Marioni JC; Venkitaraman AR
    Genome Biol; 2015 Sep; 16(1):201. PubMed ID: 26392272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is Genome Complexity a Consequence of Inefficient Selection? Evidence from Intron Creation in Nonrecombining Regions.
    Roy SW
    Mol Biol Evol; 2016 Dec; 33(12):3088-3094. PubMed ID: 27655009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exon creation and establishment in human genes.
    Corvelo A; Eyras E
    Genome Biol; 2008; 9(9):R141. PubMed ID: 18811936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity.
    Marquez Y; Höpfler M; Ayatollahi Z; Barta A; Kalyna M
    Genome Res; 2015 Jul; 25(7):995-1007. PubMed ID: 25934563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intronic Alus influence alternative splicing.
    Lev-Maor G; Ram O; Kim E; Sela N; Goren A; Levanon EY; Ast G
    PLoS Genet; 2008 Sep; 4(9):e1000204. PubMed ID: 18818740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.