These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 31315852)
1. Development and validation of 15-month mortality prediction models: a retrospective observational comparison of machine-learning techniques in a national sample of Medicare recipients. Berg GD; Gurley VF BMJ Open; 2019 Jul; 9(7):e022935. PubMed ID: 31315852 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of a 5-year mortality prediction model using regularized regression and Medicare data. Lund JL; Kuo TM; Brookhart MA; Meyer AM; Dalton AF; Kistler CE; Wheeler SB; Lewis CL Pharmacoepidemiol Drug Saf; 2019 May; 28(5):584-592. PubMed ID: 30891850 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes. Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560 [TBL] [Abstract][Full Text] [Related]
5. Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database. Miller PE; Pawar S; Vaccaro B; McCullough M; Rao P; Ghosh R; Warier P; Desai NR; Ahmad T J Card Fail; 2019 Jun; 25(6):479-483. PubMed ID: 30738152 [TBL] [Abstract][Full Text] [Related]
6. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches. Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047 [TBL] [Abstract][Full Text] [Related]
7. Using claims data to examine mortality trends following hospitalization for heart attack in Medicare. Ash AS; Posner MA; Speckman J; Franco S; Yacht AC; Bramwell L Health Serv Res; 2003 Oct; 38(5):1253-62. PubMed ID: 14596389 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the performance of the CMS Hierarchical Condition Category (CMS-HCC) risk adjuster with the Charlson and Elixhauser comorbidity measures in predicting mortality. Li P; Kim MM; Doshi JA BMC Health Serv Res; 2010 Aug; 10():245. PubMed ID: 20727154 [TBL] [Abstract][Full Text] [Related]
9. Using machine learning to predict risk of incident opioid use disorder among fee-for-service Medicare beneficiaries: A prognostic study. Lo-Ciganic WH; Huang JL; Zhang HH; Weiss JC; Kwoh CK; Donohue JM; Gordon AJ; Cochran G; Malone DC; Kuza CC; Gellad WF PLoS One; 2020; 15(7):e0235981. PubMed ID: 32678860 [TBL] [Abstract][Full Text] [Related]
10. Can Machine-learning Techniques Be Used for 5-year Survival Prediction of Patients With Chondrosarcoma? Thio QCBS; Karhade AV; Ogink PT; Raskin KA; De Amorim Bernstein K; Lozano Calderon SA; Schwab JH Clin Orthop Relat Res; 2018 Oct; 476(10):2040-2048. PubMed ID: 30179954 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention. Mortazavi BJ; Bucholz EM; Desai NR; Huang C; Curtis JP; Masoudi FA; Shaw RE; Negahban SN; Krumholz HM JAMA Netw Open; 2019 Jul; 2(7):e196835. PubMed ID: 31290991 [TBL] [Abstract][Full Text] [Related]
12. Validation of a 5-Year Mortality Prediction Model among U.S. Medicare Beneficiaries. Ross RK; Kuo TM; Webster-Clark M; Lewis CL; Kistler CE; Jonsson Funk M; Lund JL J Am Geriatr Soc; 2020 Dec; 68(12):2898-2902. PubMed ID: 32889756 [TBL] [Abstract][Full Text] [Related]
13. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach. Zhu K; Lou Z; Zhou J; Ballester N; Kong N; Parikh P Methods Inf Med; 2015; 54(6):560-7. PubMed ID: 26548400 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of the Summary Elixhauser Comorbidity Score for Use With ICD-10-CM-Coded Data Among Older Adults. Mehta HB; Li S; An H; Goodwin JS; Alexander GC; Segal JB Ann Intern Med; 2022 Oct; 175(10):1423-1430. PubMed ID: 36095314 [TBL] [Abstract][Full Text] [Related]
15. Development of comorbidity score for patients undergoing major surgery. Mehta HB; Yong S; Sura SD; Hughes BD; Kuo YF; Williams SB; Tyler DS; Riall TS; Goodwin JS Health Serv Res; 2019 Dec; 54(6):1223-1232. PubMed ID: 31576566 [TBL] [Abstract][Full Text] [Related]
16. Application of machine learning approaches to administrative claims data to predict clinical outcomes in medical and surgical patient populations. MacKay EJ; Stubna MD; Chivers C; Draugelis ME; Hanson WJ; Desai ND; Groeneveld PW PLoS One; 2021; 16(6):e0252585. PubMed ID: 34081720 [TBL] [Abstract][Full Text] [Related]
17. Can a machine learning model accurately predict patient resource utilization following lumbar spinal fusion? Karnuta JM; Golubovsky JL; Haeberle HS; Rajan PV; Navarro SM; Kamath AF; Schaffer JL; Krebs VE; Pelle DW; Ramkumar PN Spine J; 2020 Mar; 20(3):329-336. PubMed ID: 31654809 [TBL] [Abstract][Full Text] [Related]
18. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. Rau CS; Kuo PJ; Chien PC; Huang CY; Hsieh HY; Hsieh CH PLoS One; 2018; 13(11):e0207192. PubMed ID: 30412613 [TBL] [Abstract][Full Text] [Related]
19. Adaptation of the Acute Organ Failure Score for Use in a Medicare Population. Courtright KR; Halpern SD; Bayes B; Harhay MO; Raneses E; Kipnis P; Escobar GJ; Kerlin MP Crit Care Med; 2017 Nov; 45(11):1863-1870. PubMed ID: 28777196 [TBL] [Abstract][Full Text] [Related]