BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31315967)

  • 1. Observations of Shear Stress Effects on Staphylococcus aureus Biofilm Formation.
    Sherman E; Bayles K; Moormeier D; Endres J; Wei T
    mSphere; 2019 Jul; 4(4):. PubMed ID: 31315967
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of Type I Fimbriae and Fluid Shear Stress on Bacterial Behavior and Multicellular Architecture of Early Escherichia coli Biofilms at Single-Cell Resolution.
    Wang L; Keatch R; Zhao Q; Wright JA; Bryant CE; Redmann AL; Terentjev EM
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration.
    Rupp CJ; Fux CA; Stoodley P
    Appl Environ Microbiol; 2005 Apr; 71(4):2175-8. PubMed ID: 15812054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential binding of biofilm-derived and suspension-grown Staphylococcus aureus to immobilized platelets in shear flow.
    George NP; Ymele-Leki P; Konstantopoulos K; Ross JM
    J Infect Dis; 2009 Mar; 199(5):633-40. PubMed ID: 19210161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Staphylococcus aureus Aggregates on Orthopedic Materials under Varying Levels of Shear Stress.
    Gupta TT; Gupta NK; Pestrak MJ; Dusane DH; Harro JM; Horswill AR; Stoodley P
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32709721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of
    Chew SC; Yam JKH; Matysik A; Seng ZJ; Klebensberger J; Givskov M; Doyle P; Rice SA; Yang L; Kjelleberg S
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms.
    Hou J; Veeregowda DH; van de Belt-Gritter B; Busscher HJ; van der Mei HC
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen.
    Ymele-Leki P; Ross JM
    Appl Environ Microbiol; 2007 Mar; 73(6):1834-41. PubMed ID: 17277217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Influence of Patterned Surface Features on the Accumulation of Bovine Synovial Fluid-Induced Aggregates of Staphylococcus aureus.
    Gupta N; Gupta TT; Patel K; Stoodley P
    Appl Environ Microbiol; 2022 Nov; 88(22):e0121722. PubMed ID: 36286507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinctive stages and strain variations of A. baumannii biofilm development under shear flow.
    Feng SH; Stojadinovic A; Izadjoo M
    J Wound Care; 2013 Apr; 22(4):173-4, 176-8, 180-1. PubMed ID: 23702669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear culture of Staphylococcus aureus.
    Castro SL; Nelman-Gonzalez M; Nickerson CA; Ott CM
    Appl Environ Microbiol; 2011 Sep; 77(18):6368-78. PubMed ID: 21803898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation.
    Pestrak MJ; Gupta TT; Dusane DH; Guzior DV; Staats A; Harro J; Horswill AR; Stoodley P
    PLoS One; 2020; 15(4):e0231791. PubMed ID: 32302361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal and stochastic control of Staphylococcus aureus biofilm development.
    Moormeier DE; Bose JL; Horswill AR; Bayles KW
    mBio; 2014 Oct; 5(5):e01341-14. PubMed ID: 25316695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of alkaline pH on staphylococcal biofilm formation.
    Nostro A; Cellini L; Di Giulio M; D'Arrigo M; Marino A; Blanco AR; Favaloro A; Cutroneo G; Bisignano G
    APMIS; 2012 Sep; 120(9):733-42. PubMed ID: 22882263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa.
    Yang L; Liu Y; Markussen T; Høiby N; Tolker-Nielsen T; Molin S
    FEMS Immunol Med Microbiol; 2011 Aug; 62(3):339-47. PubMed ID: 21595754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Staphylococcus aureus biofilm: a complex developmental organism.
    Moormeier DE; Bayles KW
    Mol Microbiol; 2017 May; 104(3):365-376. PubMed ID: 28142193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections.
    Mottola C; Matias CS; Mendes JJ; Melo-Cristino J; Tavares L; Cavaco-Silva P; Oliveira M
    BMC Microbiol; 2016 Jun; 16(1):119. PubMed ID: 27339028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates.
    Salek MM; Sattari P; Martinuzzi RJ
    Ann Biomed Eng; 2012 Mar; 40(3):707-28. PubMed ID: 22042624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel in vitro model for haematogenous spreading of S. aureus device biofilms demonstrating clumping dispersal as an advantageous dissemination mechanism.
    Grønnemose RB; Saederup KL; Kolmos HJ; Hansen SWK; Asferg CA; Rasmussen KJ; Palarasah Y; Andersen TE
    Cell Microbiol; 2017 Dec; 19(12):. PubMed ID: 28873268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staphylococcus aureus biofilm formation and tolerance to antibiotics in response to oscillatory shear stresses of physiological levels.
    Kostenko V; Salek MM; Sattari P; Martinuzzi RJ
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):421-31. PubMed ID: 20528928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.