These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31316057)

  • 21. Controllable freezing of the nuclear spin bath in a single-atom spin qubit.
    Mądzik MT; Ladd TD; Hudson FE; Itoh KM; Jakob AM; Johnson BC; McCallum JC; Jamieson DN; Dzurak AS; Laucht A; Morello A
    Sci Adv; 2020 Jul; 6(27):. PubMed ID: 32937454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron spin dephasing due to hyperfine interactions with a nuclear spin bath.
    Cywiński L; Witzel WM; Das Sarma S
    Phys Rev Lett; 2009 Feb; 102(5):057601. PubMed ID: 19257553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots.
    Weiss KM; Elzerman JM; Delley YL; Miguel-Sanchez J; Imamoğlu A
    Phys Rev Lett; 2012 Sep; 109(10):107401. PubMed ID: 23005324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot.
    Wüst G; Munsch M; Maier F; Kuhlmann AV; Ludwig A; Wieck AD; Loss D; Poggio M; Warburton RJ
    Nat Nanotechnol; 2016 Oct; 11(10):885-889. PubMed ID: 27428274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9.
    Yoneda J; Takeda K; Otsuka T; Nakajima T; Delbecq MR; Allison G; Honda T; Kodera T; Oda S; Hoshi Y; Usami N; Itoh KM; Tarucha S
    Nat Nanotechnol; 2018 Feb; 13(2):102-106. PubMed ID: 29255292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs.
    Botzem T; McNeil RP; Mol JM; Schuh D; Bougeard D; Bluhm H
    Nat Commun; 2016 Apr; 7():11170. PubMed ID: 27079269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppressing spin qubit dephasing by nuclear state preparation.
    Reilly DJ; Taylor JM; Petta JR; Marcus CM; Hanson MP; Gossard AC
    Science; 2008 Aug; 321(5890):817-21. PubMed ID: 18687959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A decoherence-free subspace in a charge quadrupole qubit.
    Friesen M; Ghosh J; Eriksson MA; Coppersmith SN
    Nat Commun; 2017 Jun; 8():15923. PubMed ID: 28643778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Notch filtering the nuclear environment of a spin qubit.
    Malinowski FK; Martins F; Nissen PD; Barnes E; Cywiński Ł; Rudner MS; Fallahi S; Gardner GC; Manfra MJ; Marcus CM; Kuemmeth F
    Nat Nanotechnol; 2017 Jan; 12(1):16-20. PubMed ID: 27694847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Universal coherence protection in a solid-state spin qubit.
    Miao KC; Blanton JP; Anderson CP; Bourassa A; Crook AL; Wolfowicz G; Abe H; Ohshima T; Awschalom DD
    Science; 2020 Sep; 369(6510):1493-1497. PubMed ID: 32792463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-fidelity spin entanglement using optimal control.
    Dolde F; Bergholm V; Wang Y; Jakobi I; Naydenov B; Pezzagna S; Meijer J; Jelezko F; Neumann P; Schulte-Herbrüggen T; Biamonte J; Wrachtrup J
    Nat Commun; 2014 Feb; 5():3371. PubMed ID: 24584174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment.
    Abobeih MH; Cramer J; Bakker MA; Kalb N; Markham M; Twitchen DJ; Taminiau TH
    Nat Commun; 2018 Jun; 9(1):2552. PubMed ID: 29959326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron Spin Coherence in Optically Excited States of Rare-Earth Ions for Microwave to Optical Quantum Transducers.
    Welinski S; Woodburn PJT; Lauk N; Cone RL; Simon C; Goldner P; Thiel CW
    Phys Rev Lett; 2019 Jun; 122(24):247401. PubMed ID: 31322401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preserving electron spin coherence in solids by optimal dynamical decoupling.
    Du J; Rong X; Zhao N; Wang Y; Yang J; Liu RB
    Nature; 2009 Oct; 461(7268):1265-8. PubMed ID: 19865168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling the coherence of a diamond spin qubit through its strain environment.
    Sohn YI; Meesala S; Pingault B; Atikian HA; Holzgrafe J; Gündoğan M; Stavrakas C; Stanley MJ; Sipahigil A; Choi J; Zhang M; Pacheco JL; Abraham J; Bielejec E; Lukin MD; Atatüre M; Lončar M
    Nat Commun; 2018 May; 9(1):2012. PubMed ID: 29789553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum dynamics of two-spin-qubit systems.
    Nguyen VH
    J Phys Condens Matter; 2009 Jul; 21(27):273201. PubMed ID: 21828484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Faraday rotation echo spectroscopy and detection of quantum fluctuations.
    Chen SW; Liu RB
    Sci Rep; 2014 Apr; 4():4695. PubMed ID: 24733086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing coherence in molecular spin qubits via atomic clock transitions.
    Shiddiq M; Komijani D; Duan Y; Gaita-Ariño A; Coronado E; Hill S
    Nature; 2016 Mar; 531(7594):348-51. PubMed ID: 26983539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coherence and control of quantum registers based on electronic spin in a nuclear spin bath.
    Cappellaro P; Jiang L; Hodges JS; Lukin MD
    Phys Rev Lett; 2009 May; 102(21):210502. PubMed ID: 19519089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Quantum Gates for Individual Nuclear Spin Qubits by Indirect Control.
    Hegde SS; Zhang J; Suter D
    Phys Rev Lett; 2020 Jun; 124(22):220501. PubMed ID: 32567913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.