These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31316062)

  • 1. Acoustic meta-atom with experimentally verified maximum Willis coupling.
    Melnikov A; Chiang YK; Quan L; Oberst S; Alù A; Marburg S; Powell D
    Nat Commun; 2019 Jul; 10(1):3148. PubMed ID: 31316062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extreme material parameters accessible by active acoustic metamaterials with Willis coupling.
    Craig SR; Wang B; Su X; Banerjee D; Welch PJ; Yip MC; Hu Y; Shi C
    J Acoust Soc Am; 2022 Mar; 151(3):1722. PubMed ID: 35364942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Odd Willis coupling induced by broken time-reversal symmetry.
    Quan L; Yves S; Peng Y; Esfahlani H; Alù A
    Nat Commun; 2021 May; 12(1):2615. PubMed ID: 33972517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Willis Coupling-Induced Acoustic Radiation Force and Torque Reversal.
    Sepehrirahnama S; Oberst S; Chiang YK; Powell DA
    Phys Rev Lett; 2022 Oct; 129(17):174501. PubMed ID: 36332239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evidence of Willis coupling in a one-dimensional effective material element.
    Muhlestein MB; Sieck CF; Wilson PS; Haberman MR
    Nat Commun; 2017 Jun; 8():15625. PubMed ID: 28607495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum Willis Coupling in Acoustic Scatterers.
    Quan L; Ra'di Y; Sounas DL; Alù A
    Phys Rev Lett; 2018 Jun; 120(25):254301. PubMed ID: 29979059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound attenuation enhancement of acoustic meta-atoms via coupling.
    Kronowetter F; Pretsch L; Chiang YK; Melnikov A; Sepehrirahnama S; Oberst S; Powell DA; Marburg S
    J Acoust Soc Am; 2023 Aug; 154(2):842-851. PubMed ID: 37566720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-depth investigations into symmetrical labyrinthine acoustic metamaterial with two micro-slit entries for low-frequency sound absorption.
    Pavan G; Singh S
    J Acoust Soc Am; 2024 Jan; 155(1):496-510. PubMed ID: 38251978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Willis Coupling in Spatiotemporal Diffusive Metamaterials.
    Xu L; Xu G; Li J; Li Y; Huang J; Qiu CW
    Phys Rev Lett; 2022 Oct; 129(15):155901. PubMed ID: 36269965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of acoustic focusing using a bianisotropic acoustic lens.
    Lawrence AJ; Goldsberry BM; Wallen SP; Haberman MR
    J Acoust Soc Am; 2020 Oct; 148(4):EL365. PubMed ID: 33138487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymptotics of the meta-atom: plane wave scattering by a single Helmholtz resonator.
    Smith MJA; Cotterill PA; Nigro D; Parnell WJ; Abrahams ID
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20210383. PubMed ID: 36209807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic scattering from a fluid cylinder with Willis constitutive properties.
    Muhlestein MB; Goldsberry BM; Norris AN; Haberman MR
    Proc Math Phys Eng Sci; 2018 Dec; 474(2220):20180571. PubMed ID: 30602938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting double negativity using transmitted phase in space coiling metamaterials.
    Maurya SK; Pandey A; Shukla S; Saxena S
    R Soc Open Sci; 2018 May; 5(5):171042. PubMed ID: 29892344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional ultrathin planar lenses by acoustic metamaterials.
    Li Y; Yu G; Liang B; Zou X; Li G; Cheng S; Cheng J
    Sci Rep; 2014 Oct; 4():6830. PubMed ID: 25354997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research Progress and Development Trends of Acoustic Metamaterials.
    Song H; Ding X; Cui Z; Hu H
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34209353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Willis couplings in continuously varying cross-sectional area duct.
    Krpenský A; Bednařík M; Groby JP
    J Acoust Soc Am; 2023 Sep; 154(3):1660-1666. PubMed ID: 37702432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust design of an asymmetrically absorbing Willis acoustic metasurface subject to manufacturing-induced dimensional variations.
    Wiest T; Seepersad CC; Haberman MR
    J Acoust Soc Am; 2022 Jan; 151(1):216. PubMed ID: 35105018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space.
    Koo S; Cho C; Jeong JH; Park N
    Nat Commun; 2016 Sep; 7():13012. PubMed ID: 27687689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic metamaterials with circular sector cavities and programmable densities.
    Akl W; Elsabbagh A; Baz A
    J Acoust Soc Am; 2012 Oct; 132(4):2857-65. PubMed ID: 23039552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband Focusing Acoustic Lens Based on Fractal Metamaterials.
    Song GY; Huang B; Dong HY; Cheng Q; Cui TJ
    Sci Rep; 2016 Oct; 6():35929. PubMed ID: 27782216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.