These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31316065)

  • 1. Label-free neuroimaging in vivo using synchronous angular scanning microscopy with single-scattering accumulation algorithm.
    Kim M; Jo Y; Hong JH; Kim S; Yoon S; Song KD; Kang S; Lee B; Kim GH; Park HC; Choi W
    Nat Commun; 2019 Jul; 10(1):3152. PubMed ID: 31316065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-field microscopy for fast volumetric brain imaging.
    Zhang Z; Cong L; Bai L; Wang K
    J Neurosci Methods; 2021 Mar; 352():109083. PubMed ID: 33484746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (
    Cong L; Wang Z; Chai Y; Hang W; Shang C; Yang W; Bai L; Du J; Wang K; Wen Q
    Elife; 2017 Sep; 6():. PubMed ID: 28930070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull.
    Yoon S; Lee H; Hong JH; Lim YS; Choi W
    Nat Commun; 2020 Nov; 11(1):5721. PubMed ID: 33184297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed aberration measurement for deep tissue imaging in vivo.
    Wang C; Liu R; Milkie DE; Sun W; Tan Z; Kerlin A; Chen TW; Kim DS; Ji N
    Nat Methods; 2014 Oct; 11(10):1037-40. PubMed ID: 25128976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish.
    Correia T; Lockwood N; Kumar S; Yin J; Ramel MC; Andrews N; Katan M; Bugeon L; Dallman MJ; McGinty J; Frankel P; French PM; Arridge S
    PLoS One; 2015; 10(8):e0136213. PubMed ID: 26308086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Through-skull brain imaging in vivo at visible wavelengths via dimensionality reduction adaptive-optical microscopy.
    Jo Y; Lee YR; Hong JH; Kim DY; Kwon J; Choi M; Kim M; Choi W
    Sci Adv; 2022 Jul; 8(30):eabo4366. PubMed ID: 35895824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography.
    Bassi A; Fieramonti L; D'Andrea C; Mione M; Valentini G
    J Biomed Opt; 2011 Oct; 16(10):100502. PubMed ID: 22029341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput volumetric adaptive optical imaging using compressed time-reversal matrix.
    Lee H; Yoon S; Loohuis P; Hong JH; Kang S; Choi W
    Light Sci Appl; 2022 Jan; 11(1):16. PubMed ID: 35027538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scattering correction through a space-variant blind deconvolution algorithm.
    Benno KS; Lars O; Tobias SM; Timo M; Vasilis N
    J Biomed Opt; 2016 Sep; 21(9):96005. PubMed ID: 27618289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-Brain Calcium Imaging during Physiological Vestibular Stimulation in Larval Zebrafish.
    Migault G; van der Plas TL; Trentesaux H; Panier T; Candelier R; Proville R; Englitz B; Debrégeas G; Bormuth V
    Curr Biol; 2018 Dec; 28(23):3723-3735.e6. PubMed ID: 30449666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of neural light-scattering activity in vivo: optical transmittance studies in the rat brain.
    Pan WJ; Lee SY; Billings J; Nezafati M; Majeed W; Buckley E; Keilholz S
    Neuroimage; 2018 Oct; 179():207-214. PubMed ID: 29908312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique.
    Kong L; Cui M
    Opt Express; 2015 Mar; 23(5):6145-50. PubMed ID: 25836837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing in vivo brain neural structures using volume rendered feature spaces.
    Nakao M; Kurebayashi K; Sugiura T; Sato T; Sawada K; Kawakami R; Nemoto T; Minato K; Matsuda T
    Comput Biol Med; 2014 Oct; 53():85-93. PubMed ID: 25129020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarimetric optical scanning microscopy of zebrafish embryonic development using the coherency matrix.
    Le Gratiet A; Bendandi A; Sheppard CJR; Diaspro A
    J Biophotonics; 2021 Jun; 14(6):e202000494. PubMed ID: 33583144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin.
    Kwon Y; Hong JH; Kang S; Lee H; Jo Y; Kim KH; Yoon S; Choi W
    Nat Commun; 2023 Jan; 14(1):105. PubMed ID: 36609405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined hardware and computational optical wavefront correction.
    South FA; Kurokawa K; Liu Z; Liu YZ; Miller DT; Boppart SA
    Biomed Opt Express; 2018 Jun; 9(6):2562-2574. PubMed ID: 30258673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood Vessel Imaging at Pre-Larval Stages of Zebrafish Embryonic Development.
    Machikhin AS; Volkov MV; Burlakov AB; Khokhlov DD; Potemkin AV
    Diagnostics (Basel); 2020 Oct; 10(11):. PubMed ID: 33143148
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.