BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31316066)

  • 1. NASC-seq monitors RNA synthesis in single cells.
    Hendriks GJ; Jung LA; Larsson AJM; Lidschreiber M; Andersson Forsman O; Lidschreiber K; Cramer P; Sandberg R
    Nat Commun; 2019 Jul; 10(1):3138. PubMed ID: 31316066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TT-seq captures enhancer landscapes immediately after T-cell stimulation.
    Michel M; Demel C; Zacher B; Schwalb B; Krebs S; Blum H; Gagneur J; Cramer P
    Mol Syst Biol; 2017 Mar; 13(3):920. PubMed ID: 28270558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective detection of variation in single-cell transcriptomes using MATQ-seq.
    Sheng K; Cao W; Niu Y; Deng Q; Zong C
    Nat Methods; 2017 Mar; 14(3):267-270. PubMed ID: 28092691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scSLAM-seq reveals core features of transcription dynamics in single cells.
    Erhard F; Baptista MAP; Krammer T; Hennig T; Lange M; Arampatzi P; Jürges CS; Theis FJ; Saliba AE; Dölken L
    Nature; 2019 Jul; 571(7765):419-423. PubMed ID: 31292545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-Length Single-Cell RNA-Sequencing with FLASH-seq.
    Hahaut V; Picelli S
    Methods Mol Biol; 2023; 2584():123-164. PubMed ID: 36495447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq.
    Qiu Q; Hu P; Qiu X; Govek KW; Cámara PG; Wu H
    Nat Methods; 2020 Oct; 17(10):991-1001. PubMed ID: 32868927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAPS-seq: magnetic bead-assisted parallel single-cell gene expression profiling.
    Park M; Lee D; Bang D; Lee JH
    Exp Mol Med; 2020 May; 52(5):804-814. PubMed ID: 32404928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Onepot-Seq: capturing single-cell transcriptomes simultaneously in a continuous medium via transient localization of mRNA.
    Shin D; Choi J; Lee JH; Bang D
    Nucleic Acids Res; 2022 Dec; 50(22):12621-12635. PubMed ID: 35953080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Cell RNA-Seq by Multiple Annealing and Tailing-Based Quantitative Single-Cell RNA-Seq (MATQ-Seq).
    Sheng K; Zong C
    Methods Mol Biol; 2019; 1979():57-71. PubMed ID: 31028632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MustSeq, an alternative approach for multiplexible strand-specific 3' end sequencing of mRNA transcriptome confers high efficiency and practicality.
    Mai L; Qiu Y; Lian Z; Chen C; Wang L; Yin Y; Wang S; Yang X; Li Y; Peng W; Luo C; Pan X
    RNA Biol; 2021 Oct; 18(sup1):232-243. PubMed ID: 34586036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression.
    Nakamura T; Yabuta Y; Okamoto I; Aramaki S; Yokobayashi S; Kurimoto K; Sekiguchi K; Nakagawa M; Yamamoto T; Saitou M
    Nucleic Acids Res; 2015 May; 43(9):e60. PubMed ID: 25722368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling Transcriptional Heterogeneity with Seq-Well S
    Drake RS; Villanueva MA; Vilme M; Russo DD; Navia A; Love JC; Shalek AK
    Methods Mol Biol; 2023; 2584():57-104. PubMed ID: 36495445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.
    Macaulay IC; Teng MJ; Haerty W; Kumar P; Ponting CP; Voet T
    Nat Protoc; 2016 Nov; 11(11):2081-103. PubMed ID: 27685099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Nucleus RNA-Seq Is Not Suitable for Detection of Microglial Activation Genes in Humans.
    Thrupp N; Sala Frigerio C; Wolfs L; Skene NG; Fattorelli N; Poovathingal S; Fourne Y; Matthews PM; Theys T; Mancuso R; de Strooper B; Fiers M
    Cell Rep; 2020 Sep; 32(13):108189. PubMed ID: 32997994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live-seq enables temporal transcriptomic recording of single cells.
    Chen W; Guillaume-Gentil O; Rainer PY; Gäbelein CG; Saelens W; Gardeux V; Klaeger A; Dainese R; Zachara M; Zambelli T; Vorholt JA; Deplancke B
    Nature; 2022 Aug; 608(7924):733-740. PubMed ID: 35978187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-seq analysis of transcriptomes in thrombin-treated and control human pulmonary microvascular endothelial cells.
    Cheranova D; Gibson M; Chaudhary S; Zhang LQ; Heruth DP; Grigoryev DN; Ye SQ
    J Vis Exp; 2013 Feb; (72):. PubMed ID: 23426025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.