These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31316086)

  • 1. Intrinsic dynamic behavior of enzyme:substrate complexes govern the catalytic action of β-galactosidases across clan GH-A.
    Kumar R; Henrissat B; Coutinho PM
    Sci Rep; 2019 Jul; 9(1):10346. PubMed ID: 31316086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages.
    Rico-Díaz A; Ramírez-Escudero M; Vizoso-Vázquez Á; Cerdán ME; Becerra M; Sanz-Aparicio J
    FEBS J; 2017 Jun; 284(12):1815-1829. PubMed ID: 28391618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspergillus aculeatus beta-1,4-galactanase: substrate recognition and relations to other glycoside hydrolases in clan GH-A.
    Ryttersgaard C; Lo Leggio L; Coutinho PM; Henrissat B; Larsen S
    Biochemistry; 2002 Dec; 41(51):15135-43. PubMed ID: 12484750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of α-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42.
    Viborg AH; Katayama T; Arakawa T; Abou Hachem M; Lo Leggio L; Kitaoka M; Svensson B; Fushinobu S
    J Biol Chem; 2017 Dec; 292(51):21092-21101. PubMed ID: 29061847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the beta-mannosidase, BtMan2A.
    Tailford LE; Money VA; Smith NL; Dumon C; Davies GJ; Gilbert HJ
    J Biol Chem; 2007 Apr; 282(15):11291-9. PubMed ID: 17287210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.
    Solomon HV; Tabachnikov O; Lansky S; Salama R; Feinberg H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2433-48. PubMed ID: 26627651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate distortion in the Michaelis complex of Bacillus 1,3-1,4-beta-glucanase. Insight from first principles molecular dynamics simulations.
    Biarnés X; Nieto J; Planas A; Rovira C
    J Biol Chem; 2006 Jan; 281(3):1432-41. PubMed ID: 16260784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity.
    Manas NH; Bakar FD; Illias RM
    J Mol Graph Model; 2016 Jun; 67():1-13. PubMed ID: 27155296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational analyses of the reaction coordinate of glycosidases.
    Davies GJ; Planas A; Rovira C
    Acc Chem Res; 2012 Feb; 45(2):308-16. PubMed ID: 21923088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of exo-β-mannanase activity in the GH2 family.
    Domingues MN; Souza FHM; Vieira PS; de Morais MAB; Zanphorlin LM; Dos Santos CR; Pirolla RAS; Honorato RV; de Oliveira PSL; Gozzo FC; Murakami MT
    J Biol Chem; 2018 Aug; 293(35):13636-13649. PubMed ID: 29997257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multitasking in the gut: the X-ray structure of the multidomain BbgIII from Bifidobacterium bifidum offers possible explanations for its alternative functions.
    Moroz OV; Blagova E; Lebedev AA; Sánchez Rodríguez F; Rigden DJ; Tams JW; Wilting R; Vester JK; Longhin E; Hansen GH; Krogh KBRM; Pache RA; Davies GJ; Wilson KS
    Acta Crystallogr D Struct Biol; 2021 Dec; 77(Pt 12):1564-1578. PubMed ID: 34866612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimeric crystal structure of the glycoside hydrolase family 42 beta-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose.
    Hidaka M; Fushinobu S; Ohtsu N; Motoshima H; Matsuzawa H; Shoun H; Wakagi T
    J Mol Biol; 2002 Sep; 322(1):79-91. PubMed ID: 12215416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697.
    Viborg AH; Katayama T; Abou Hachem M; Andersen MC; Nishimoto M; Clausen MH; Urashima T; Svensson B; Kitaoka M
    Glycobiology; 2014 Feb; 24(2):208-16. PubMed ID: 24270321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans.
    Pluvinage B; Hehemann JH; Boraston AB
    J Biol Chem; 2013 Sep; 288(39):28078-88. PubMed ID: 23921382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into the substrate specificity of Streptococcus pneumoniae β(1,3)-galactosidase BgaC.
    Cheng W; Wang L; Jiang YL; Bai XH; Chu J; Li Q; Yu G; Liang QL; Zhou CZ; Chen Y
    J Biol Chem; 2012 Jun; 287(27):22910-8. PubMed ID: 22593580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold-Active β-Galactosidases: Insight into Cold Adaption Mechanisms and Biotechnological Exploitation.
    Mangiagalli M; Lotti M
    Mar Drugs; 2021 Jan; 19(1):. PubMed ID: 33477853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary arrangement.
    Mangiagalli M; Lapi M; Maione S; Orlando M; Brocca S; Pesce A; Barbiroli A; Camilloni C; Pucciarelli S; Lotti M; Nardini M
    FEBS J; 2021 Jan; 288(2):546-565. PubMed ID: 32363751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies of a cold-adapted dimeric β-D-galactosidase from Paracoccus sp. 32d.
    Rutkiewicz-Krotewicz M; Pietrzyk-Brzezinska AJ; Sekula B; Cieśliński H; Wierzbicka-Woś A; Kur J; Bujacz A
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):1049-61. PubMed ID: 27599737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-recognition mechanism of tomato β-galactosidase 4 using X-ray crystallography and docking simulation.
    Matsuyama K; Kondo T; Igarashi K; Sakamoto T; Ishimaru M
    Planta; 2020 Oct; 252(4):72. PubMed ID: 33011862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state.
    Wheatley RW; Huber RE
    Biochem Cell Biol; 2015 Dec; 93(6):531-40. PubMed ID: 26291713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.