These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 31317003)
1. Detecting insertion, substitution, and deletion errors in radiology reports using neural sequence-to-sequence models. Zech J; Forde J; Titano JJ; Kaji D; Costa A; Oermann EK Ann Transl Med; 2019 Jun; 7(11):233. PubMed ID: 31317003 [TBL] [Abstract][Full Text] [Related]
2. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. Zech JR; Badgeley MA; Liu M; Costa AB; Titano JJ; Oermann EK PLoS Med; 2018 Nov; 15(11):e1002683. PubMed ID: 30399157 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents. Wu JT; Wong KCL; Gur Y; Ansari N; Karargyris A; Sharma A; Morris M; Saboury B; Ahmad H; Boyko O; Syed A; Jadhav A; Wang H; Pillai A; Kashyap S; Moradi M; Syeda-Mahmood T JAMA Netw Open; 2020 Oct; 3(10):e2022779. PubMed ID: 33034642 [TBL] [Abstract][Full Text] [Related]
5. Application of a Domain-specific BERT for Detection of Speech Recognition Errors in Radiology Reports. Chaudhari GR; Liu T; Chen TL; Joseph GB; Vella M; Lee YJ; Vu TH; Seo Y; Rauschecker AM; McCulloch CE; Sohn JH Radiol Artif Intell; 2022 Jul; 4(4):e210185. PubMed ID: 35923373 [TBL] [Abstract][Full Text] [Related]
6. Automatic Disease Annotation From Radiology Reports Using Artificial Intelligence Implemented by a Recurrent Neural Network. Lee C; Kim Y; Kim YS; Jang J AJR Am J Roentgenol; 2019 Apr; 212(4):734-740. PubMed ID: 30699011 [TBL] [Abstract][Full Text] [Related]
7. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks. Annarumma M; Withey SJ; Bakewell RJ; Pesce E; Goh V; Montana G Radiology; 2019 Apr; 291(1):196-202. PubMed ID: 30667333 [TBL] [Abstract][Full Text] [Related]
8. Bigram frequency analysis for detection of radiology report errors. Cheng PM Clin Imaging; 2022 Sep; 89():84-88. PubMed ID: 35759885 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning-Based Natural Language Processing in Radiology: The Impact of Report Complexity, Disease Prevalence, Dataset Size, and Algorithm Type on Model Performance. Olthof AW; van Ooijen PMA; Cornelissen LJ J Med Syst; 2021 Sep; 45(10):91. PubMed ID: 34480231 [TBL] [Abstract][Full Text] [Related]
10. Natural Language Processing for the Identification of Silent Brain Infarcts From Neuroimaging Reports. Fu S; Leung LY; Wang Y; Raulli AO; Kallmes DF; Kinsman KA; Nelson KB; Clark MS; Luetmer PH; Kingsbury PR; Kent DM; Liu H JMIR Med Inform; 2019 Apr; 7(2):e12109. PubMed ID: 31066686 [TBL] [Abstract][Full Text] [Related]
11. Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports. Zech J; Pain M; Titano J; Badgeley M; Schefflein J; Su A; Costa A; Bederson J; Lehar J; Oermann EK Radiology; 2018 May; 287(2):570-580. PubMed ID: 29381109 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive Word-Level Classification of Screening Mammography Reports Using a Neural Network Sequence Labeling Approach. Short RG; Bralich J; Bogaty D; Befera NT J Digit Imaging; 2019 Oct; 32(5):685-692. PubMed ID: 30338478 [TBL] [Abstract][Full Text] [Related]
13. Natural language processing of head CT reports to identify intracranial mass effect: CTIME algorithm. Gordon AJ; Banerjee I; Block J; Winstead-Derlega C; Wilson JG; Mitarai T; Jarrett M; Sanyal J; Rubin DL; Wintermark M; Kohn MA Am J Emerg Med; 2022 Jan; 51():388-392. PubMed ID: 34839182 [TBL] [Abstract][Full Text] [Related]
14. Evaluating diagnostic content of AI-generated radiology reports of chest X-rays. Babar Z; van Laarhoven T; Zanzotto FM; Marchiori E Artif Intell Med; 2021 Jun; 116():102075. PubMed ID: 34020752 [TBL] [Abstract][Full Text] [Related]
15. Natural Language Processing to identify pneumonia from radiology reports. Dublin S; Baldwin E; Walker RL; Christensen LM; Haug PJ; Jackson ML; Nelson JC; Ferraro J; Carrell D; Chapman WW Pharmacoepidemiol Drug Saf; 2013 Aug; 22(8):834-41. PubMed ID: 23554109 [TBL] [Abstract][Full Text] [Related]
16. Frequency and analysis of non-clinical errors made in radiology reports using the National Integrated Medical Imaging System voice recognition dictation software. Motyer RE; Liddy S; Torreggiani WC; Buckley O Ir J Med Sci; 2016 Nov; 185(4):921-927. PubMed ID: 27696148 [TBL] [Abstract][Full Text] [Related]
17. Automated classification of radiology reports to facilitate retrospective study in radiology. Zhou Y; Amundson PK; Yu F; Kessler MM; Benzinger TL; Wippold FJ J Digit Imaging; 2014 Dec; 27(6):730-6. PubMed ID: 24874407 [TBL] [Abstract][Full Text] [Related]
18. Neural classification of Norwegian radiology reports: using NLP to detect findings in CT-scans of children. Dahl FA; Rama T; Hurlen P; Brekke PH; Husby H; Gundersen T; Nytrø Ø; Øvrelid L BMC Med Inform Decis Mak; 2021 Mar; 21(1):84. PubMed ID: 33663479 [TBL] [Abstract][Full Text] [Related]
20. Artificial neural networks: Predicting head CT findings in elderly patients presenting with minor head injury after a fall. Dusenberry MW; Brown CK; Brewer KL Am J Emerg Med; 2017 Feb; 35(2):260-267. PubMed ID: 27876174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]