BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31317010)

  • 1. Polydopamine coating promotes early osteogenesis in 3D printing porous Ti6Al4V scaffolds.
    Li L; Li Y; Yang L; Yu F; Zhang K; Jin J; Shi J; Zhu L; Liang H; Wang X; Jiang Q
    Ann Transl Med; 2019 Jun; 7(11):240. PubMed ID: 31317010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.
    Li Y; Yang W; Li X; Zhang X; Wang C; Meng X; Pei Y; Fan X; Lan P; Wang C; Li X; Guo Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5715-24. PubMed ID: 25711714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes.
    Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K
    J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models.
    Li L; Shi J; Zhang K; Yang L; Yu F; Zhu L; Liang H; Wang X; Jiang Q
    J Orthop Translat; 2019 Oct; 19():94-105. PubMed ID: 31844617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Effects of Polydopamine-Assisted Copper Immobilization on 3D-Printed Porous Ti6Al4V Scaffold for Angiogenic and Osteogenic Bone Regeneration.
    Wu HY; Lin YH; Lee AK; Kuo TY; Tsai CH; Shie MY
    Cells; 2022 Sep; 11(18):. PubMed ID: 36139399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Magnetic Iron Oxide/Polydopamine Coating Can Improve Osteogenesis of 3D-Printed Porous Titanium Scaffolds with a Static Magnetic Field by Upregulating the TGFβ-Smads Pathway.
    Huang Z; He Y; Chang X; Liu J; Yu L; Wu Y; Li Y; Tian J; Kang L; Wu D; Wang H; Wu Z; Qiu G
    Adv Healthc Mater; 2020 Jul; 9(14):e2000318. PubMed ID: 32548975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
    Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW
    J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing.
    Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P
    Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds.
    Zaharin HA; Abdul Rani AM; Azam FI; Ginta TL; Sallih N; Ahmad A; Yunus NA; Zulkifli TZA
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30487419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.
    Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL
    J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis.
    Ma L; Cheng S; Ji X; Zhou Y; Zhang Y; Li Q; Tan C; Peng F; Zhang Y; Huang W
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111303. PubMed ID: 32919664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of 3D-printed Ti
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    J Mech Behav Biomed Mater; 2018 Dec; 88():488-496. PubMed ID: 30223212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration.
    Wang C; Xu D; Lin L; Li S; Hou W; He Y; Sheng L; Yi C; Zhang X; Li H; Li Y; Zhao W; Yu D
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112499. PubMed ID: 34857285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.
    Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z
    Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo.
    Li X; Feng YF; Wang CT; Li GC; Lei W; Zhang ZY; Wang L
    PLoS One; 2012; 7(12):e52049. PubMed ID: 23272208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving osteoinduction and osteogenesis of Ti6Al4V alloy porous scaffold by regulating the pore structure.
    Wang C; Wu J; Liu L; Xu D; Liu Y; Li S; Hou W; Wang J; Chen X; Sheng L; Lin H; Yu D
    Front Chem; 2023; 11():1190630. PubMed ID: 37265590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pH-neutral bioactive glass coated 3D-printed porous Ti6Al4V scaffold with enhanced osseointegration.
    Wang X; Guo Q; He Y; Geng X; Wang C; Li Y; Li Z; Wang C; Qiu D; Tian H
    J Mater Chem B; 2023 Feb; 11(6):1203-1212. PubMed ID: 36515141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Layer Deposition of Tantalum Oxide Films on 3D-Printed Ti6Al4V Scaffolds with Enhanced Osteogenic Property for Orthopedic Implants.
    Zhang X; Guan S; Qiu J; Qiao Y; Qian S; Tan J; Yeung KWK; Liu X
    ACS Biomater Sci Eng; 2023 Jul; 9(7):4197-4207. PubMed ID: 37378535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review.
    Gu Y; Sun Y; Shujaat S; Braem A; Politis C; Jacobs R
    J Orthop Surg Res; 2022 Feb; 17(1):68. PubMed ID: 35109907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.